

Software pour l'Architecture et l'Ingénierie de la Construction

CYPE-Connect

Manuel de l'utilisateur

CYPE Ingenieros, S.A. Avda. Eusebio Sempere, 5 03003 **Alicante** Tel. (+34) 965 92 25 50 Fax (+34) 965 12 49 50 cype@cype.com

www.cype.fr

IMPORTANT: CE TEXTE REQUIERT VOTRE ATTENTION

L'information contenue dans ce document est propriété de CYPE Ingenieros, S.A. et la reproduction partielle ou totale ainsi que la diffusion sous quelques forme et support que ce soit est interdite sans l'autorisation expresse et préalable de CYPE Ingenieros, S.A.. L'infraction des droits de propriété intellectuelle peut constituer un délit au sens de l'Article L.122-4 du Code de la Propriété Intellectuelle.

Ce document et l'information qui l'accompagne sont partie intégrante et indissociable de la documentation qui accompagne la Licence d'Utilisation des programmes informatiques de CYPE Ingenieros, S.A.. Par conséquent elle est soumise aux mêmes devoirs et conditions.

N'oubliez pas que vous devrez lire, comprendre et accepter le Contrat de Licence d'Utilisation du software associé à cette documentation avant toute utilisation d'un des composants du produit. Si vous N'ACCEPTEZ PAS les termes du Contrat de Licence d'Utilisation rendez immédiatement le software et tous les éléments qui l'accompagnent au lieu d'achat afin d'en obtenir le remboursement intégral.

Ce manuel correspond à la version du software dénommé CYPE-Connect par CYPE Ingenieros, S.A. L'information contenue dans ce document décrit substantiellement les caractéristiques et méthodes d'utilisation du ou des programmes qu'elle accompagne.

L'information contenue dans ce document peut avoir été modifiée postérieurement à l'édition mécanique de ce livre sans avis préalable. Le software associé à ce document peut être soumis à des modifications sans avis préalable.

CYPE Ingenieros, S.A. dispose d'autres services parmi lesquels se trouvent les Mises à Jour, qui vous permettront d'acquérir les dernières versions du software et la documentation qui l'accompagne. Si vous avez des doutes sur les présentes conditions, par rapport au Contrat de Licence d'Utilisation du software, ou si vous souhaitez simplement rentrer en contact avec CYPE Ingenieros, S.A., adressezvous à votre Distributeur Local Autorisé ou au Service Après-Vente de CYPE Ingenieros, S.A. à l'adresse suivante :

Avda. Eusebio Sempere, 5 · 03003 Alicante (Espagne) · Tel: +34 965 92 25 50 · Fax: +34 965 12 49 50 · www.cype.com

© CYPE Ingenieros, S.A.

Edité et imprimé à Alicante (Espagne)

Windows ® est une marque registrée de Microsoft Corporation ®

Présentation
CYPE Connect6
1. Introduction
2. Description
2.1. Fichier
2.2. Données générales
2.3. Configuration
2.4. Aide
3. Introduction d'un projet exemple
3.1. Création du projet
3.2. Assistant pour la génération des données initiales8
3.3. Création des nœuds11
3.4. Édition de la géométrie et des charges12
3.5.Édition de l'assemblage25
4. Récapitulatifs des assemblages
5. Plans des assemblages

4 CYPE-Connect

Présentation

CYPE-Connect est un logiciel conçu pour vérifier, dimensionner et générer le détail des assemblages métalliques soudés ou boulonnés avec des profilés laminés en l et des assemblages coplanaires de profilés tubulaires comme ceux habituellement utilisés pour les treillis plans (circulaires creux, rectangulaires creux, carrés creux et double U laminé en caisson soudé avec un cordon continu). 6 CYPE-Connect

CYPE Connect

1. Introduction

CYPE-Connect a été créé dans le but d'avoir un outil pour le dimensionnement des assemblages de profilés laminés en l, et des assemblages coplanaires de profilés tubulaires comme ceux habituellement utilisés pour les treillis plans (circulaires creux, rectangulaires creux, carrés creux et double U laminé en caisson soudé avec un cordon continu), pour les typologies définies dans le logiciel, permettant la modification des épaisseurs et des dimensions des plaques, des types de boulons, des épaisseurs de gorge des cordons de soudure, etc. Toutes les modifications sont vérifiées par le logiciel et un récapitulatif affiche ce qui n'est pas vérifié.

2. Description

Le logiciel se présente sous forme d'une fenêtre générale affichant l'assemblage du nœud sélectionné dans le cas où il a été résolu. La partie supérieure présente quatre menus déroulants :

2.1. Fichier

Ce menu contient toutes les options pour la gestion des fichiers (Nouveau, Gestion de fichiers, Enregistrer, Enregistrer sous et Description de l'ouvrage), Imprimer (Récapitulatifs de l'ouvrage et plans de l'ouvrage), ainsi que la configuration de la Licence Électronique.

2.2. Données générales

Dans ce menu, vous trouverez d'abord les options relatives à la sélection et à la création des combinaisons et des hypothèses et les options générales de dimensionnement. Vous trouverez également les options pour naviguer parmi les assemblages. Les deux paquets d'options suivants permettent la création de la géométrie et la description des barres de l'assemblage, l'analyse de celui-ci et la modification et vérification postérieure.

Pour finir, ce menu comprend les options Vérifier et Dimensionner pour l'assemblage édité ou pour tous ceux du projet.

2.3. Configuration

Dans le menu **Configuration**, vous trouverez les options pour modifier la norme de calcul des assemblages, le système des unités à utiliser, la configuration de la taille et de l'orientation de la feuille et la sélection de l'imprimante ainsi que les styles pour les récapitulatifs du logiciel.

Ce menu contient également les options d'envoi d'ouvrage, avec ajout d'adresses email afin de pouvoir les sélectionner lors de l'envoi d'un ouvrage.

L'option **Plans** permet de créer les formats de plans et de configurer les périphériques avec lesquels seront utilisés ces formats.

Dans le paragraphe **Détails**, il est possible de créer une bibliothèque en incorporant des fichiers de CAO au format DXF ou DWG afin qu'ils puissent être incorporés dans les plans. Pour finir, vous disposez d'une option pour modifier le fond de la zone de travail du logiciel.

2.4. Aide

Tous les documents disponibles dans le logiciel se trouvent dans ce menu. L'option **À propos de...** vous permet de consulter la version et la configuration de la licence utilisée.

3. Introduction d'un projet exemple

3.1. Création du projet

Comme tous les logiciels de Cype, la création d'un projet se fait avec l'option **Nouveau** du menu **Fichier** et commence avec l'introduction du nom et la description de celui-ci.

Nouvel Ouvrage	×
Nom de l'ouvrage	
C:\CYPE Ingenieros\Projets\CYPE-Connect\	Parcourir
Nom du fichier (clé) Exemple	.unm
Description	
Exemple des assemblages d'un portique	
Accepter	Annuler
Fig. 3.1	

-

3.2. Assistant pour la génération des données initiales

Une fois la fenêtre de nom et description acceptée, vous verrez s'ouvrir l'assistant de **Nouvel Ouvrage** pour compléter les données du projet. La première fenêtre de cet assistant permet de sélectionner les normes à appliquer dans les assemblages de l'exemple. Pour cet exemple nous choisirons les eurocodes généraux.

Fig. 3.2

👔 Norme d'acier laminé 📃						
🚺 🔘 France	Eurocodes 3 et 4					
🔯 🖲 UE						
🚾 🔘 Espagne						
🚺 🔘 Italie						
阿 🔘 Portugal						
Accepter	Annuler					
Fig. 3.3						

Définissez les groupes de combinaisons pour la résolution de l'assemblage.

Nouvel Ouvrage	
✓ Normes	
Combinaisons Hypothèses de charge Options de dimensionnement	Béton: Eurocode 2 Béton dans les fondations: Eurocode 2 E.L.U. de rupture. Acier préformé: Eurocodes 3 et 4 E.L.U. de rupture. Acier laminé: Eurocodes 3 et 4 E.L.U. de rupture. Acier laminé: Eurocode 9 Contraintes sur le terrain Neige Autres États Membres CEN, H <= 1000 m < E.L.U. de rupture. Bois: CTE DB SE-M Cote de neige Attrude inférieure ou égale à 1000 m Déplacements Actions caracténtiques
Annuler	< Précédent Suivant > Terminer

Définissez ensuite les hypothèses de charge à considérer dans le dimensionnement et la vérification de l'assemblage. Cet exemple comprend une hypothèse de Charge Permanente correspondant au poids propre de la structure et de son matériau de recouvrement, une hypothèse de charge d'exploitation et 6 hypothèses de Vent. Cliquez sur le bouton édition du type d'hypothèse à ajouter pour créer celles commentées précédemment.

git	Hypothès	es addition	nelles				Éditer	Effacer
1	V(0°) H1 🗹 🗾							
1	V(0º) H2						2	Z
1	V(90º) H1						2	Z
1	V(180º) H	1					2	Z
1	V(180º) H	2					2	Z
< _	V(270º) H	1					2	Z
ombi Hypo V(O f	inaison othèse º) H1	V(0º) H1	V(0º) H2	V(90º) H1 ★	V(180º) H1	V(180º) H2	V(270	ᢪ) H1 ≺
ombi Hypc V(0 ⁴ V(0 ⁴	inaison othèse ₽) H1 ₽) H2	V(0º) H1	V(0º) H2 ★	V(90°) H1 × ×	V(180°) H1 × ×	V(180°) H2 × ×	V(270	₽) H1 < <
ombi Hypc V(0 ⁴ V(0 ⁴	inaison othèse °) H1 °) H2 0°) H1	V(0º) H1	V(0°) H2	V(90°) H1 × ×	V(180°) H1 × × ×	V(180°) H2 × × ×	V(270	P) H1 < <
ombi Hypc V(0 V(9 V(9 V(1	inaison othèse °) H1 °) H2 0°) H1 80°) H1	V(0º) H1	V(0*) H2	V(90°) H1 × ×	V(180°) H1 × × ×	V(180°) H2 × × ×	V(270	₽) H1 < < < <
ombi Hypo V(0 V(90 V(1) V(1) V(1) V(1)	inaison othèse °) H1 °) H2 0°) H1 80°) H1 80°) H2 70°) H1	V(0º) H1	V(0°) H2 ×	V(90°) H1 × ×	V(180º) H1 × × ×	V(180 ⁹) H2 × × ×	V(270)	4) H1 < < < < < <

Pour finir, sélectionnez la méthode d'assemblage y la configuration des éléments de l'assemblage (vis et raidisseurs).

Fig. 3.5

Fig. 3.7

Fig. 3.8

Fig. 3.9

3.3. Création des nœuds

Une fois toutes les fenêtres de l'assistant acceptées, vous verrez apparaître la fenêtre principale du logiciel. Pour définir un type de nœud nouveau, cliquez sur l'option **Liste de nœuds** du menu **Données générales**.

En cliquant sur le bouton 🗈, un nouveau nœud sera ajouté. Pour faciliter l'introduction, le logiciel permet de le générer à partir de typologies prédéfinies ou bien à partir de sa définition complète, sans aucune aide. Dans cet exemple, nous utiliserons les typologies prédéfinies.

Nouveau noeud	—
À partir de typolo	gies prédéfinies
© Vide	
Accepter	Annuler
Fig. 3	.11

Commencez par définir le nœud de faîtage du portique central du hangar. Pour cela, sélectionnez les types de nœuds "Raccords" et sélectionnez celui de faîtage en introduisant un angle des barres avec l'horizontale de 11,3°.

Typologies prédéfi	nies		8
 Poteau-Poutre Raccords Treilis plan 	Angle de la barre de gauche Angle de la barre de droite	11.3 degrés 11.3 degrés	ø
Accepter			Annuler

Fig. 3.12

Une fois le nœud de faîtage créé, passez à la création du nœud d'assemblage de la poutre avec le poteau en opérant de la même manière que précédemment mais en sélectionnant cette fois le type Poteau-Poutre et en sélectionnant le deuxième de la première rangée en partant de la droite.

Fig. 3.13

3.4. Édition de la géométrie et des charges

3.4.1. Nœud 1 (Raccord en faîtage)

Une fois la fenêtre acceptée, complétez la définition des deux nœuds en indiquant la série et le profil de chacune des barres ainsi que les charges à prendre en compte lors du dimensionnement. Pour cela, utilisez l'option **Éditer la géométrie du nœud** du menu **Données générales**.

Lors de la définition de la géométrie et des charges des nœuds, commencez par indiquer le nombre d'assemblages identiques présents dans le projet. Dans notre exemple, il y a 4 nœuds de raccord en faîtage égaux. Passez ensuite à la description des barres qui composent l'assemblage ; la barre sélectionnée dans la liste est affichée en couleur claire dans la vue 3D et associée à un texte afin de faciliter son identification.

Commencez par décrire la Barre 1 ; il s'agit d'un IPE300. Pour l'éditer, sélectionnez la série et le profilé de la série dans le paragraphe **Description de la barre**. Comme aucune bibliothèque par défaut n'est établie, vous devez définir les profilés avec lesquels vous allez travailler dans cet exemple. Cliquez sur le bouton **Éditer la liste d'éléments ?**, vous verrez s'ouvrir la fenêtre appelée Séries dans laquelle apparaissent toutes les séries de profils disponibles pour ce projet. Pour pouvoir les importer, cliquez sur le bouton **Importation de séries de profilés prédéfinies ?**. Vous verrez apparaître une fenêtre contenant toutes les bibliothèques de fabricants disponibles dans le logiciel ; en sélectionnant l'une d'elle, vous verrez apparaître une liste de types de séries de profilés que le logiciel peut importer. Dans notre exemple, sélectionnez les IPE et les HEB d'ArcelorMittal.

Importation de	séries de pr	rofilés prédéfinies
Acindar	Importer	Profil
Acominas	~	IPE
Abmen		IPE A
		IPE AA
ArcelorMittal		IPE O
Canadá		IPE 750
Cintac		IPN
Csg		HEA
Gerdau		HEAA
		HEB
Gost		HEM
Indian standard		HE
Aisc.Lifd		HL
Nbe-ea95		HD
Tabelas Técnicas		HP
TecnoMetal (bra)		
TecnoMetal (esp)		
TecnoMetal (ita)		
Ukprofiles		
Usilight		
IMCA		
Accepter		Annuler

Fig. 3.15

Après avoir accepté, vous pourrez sélectionner la série IPE et le profilé IPE300 de cette série. L'étape suivante pour ce nœud sera l'introduction des charges suivantes :

Barre 1	Ν	Vy	Vz	Mt	My	Mz		
Poids propre	-6.263	0.000	1.253	0.00	-11.06	0.00		
Q	-12.303	0.000	2.461	0.00	-21.72	0.00		
V(0°) H1	10.203	0.000	-0.671	0.00 14.54		-0.671 0.00 1		0.00
V(0°) H2	0.468	0.000	3.291	0.00	2.84	0.00		
V(90°) H1	18.700	0.000	-3.740	0.00	9.27	0.00		
V(180°) H1	9.677	0.000	-3.305	0.00	14.54	0.00		
V(180°) H2	-0.834	0.000	-3.218	0.00	2.84	0.00		
V(270°) H1	20.473	0.000	-4.095	0.00	11.41	0.00		

Sélectionnez la barre 2 et définissez-la égale à la précédente, en introduisant les charges suivantes :

Barre 2	N	Vy	Vz	Mt	Му	Mz	
Poids propre	-6.263	0.000	1.253	0.00	-11.06	0.00	
Q	-12.303	0.000	2.461	2.461 0.00 -21.72		0.00	
V(0°) H1	9.677	0.000	-3.305	-3.305 0.00 14.		0.00	
V(0°) H2	-0.834	0.000	-3.218	0.00	2.84	0.00	
V(90°) H1	18.700	0.000	-3.740	0.00	9.27	0.00	
V(180°) H1	10.203	0.000	-0.671	0.00	0.00 14.54		
V(180°) H2	0.468	0.000	3.291	0.00 2.84		0.00	
V(270°) H1	20.473	0.000	-4.095	0.00	11.41	0.00	

Une fois cette fenêtre acceptée, la géométrie et les charges du nœud sont définies.

Éditer la géométrie du noeud (Noeud	d 1)							- • •
Nombre de noeuds égaux. 4								0
		. /	m					,
- <u><u></u> <u></u></u>								
Descripti	tion de la barre	Efforts dan	s les axes	locaux d	le la barre	•		
∫ ⊥ Série de pi	profils IPE	Les efforts in calcul.Avec réalisera la tr	ntroduits doi la définition ransformatio	vent être da de la positi n des effort	ans les axe on de la ba s adéquate	s locaux de la irre par rappoi pour calcule	barre du mod t au noeud, le r l'assemblage	ele de programme
Profil	IPE 300 👻 🚺	Hypothèse	N (kN)	Vy (kN)	Vz (kN)	Mt (kN·m)	My(kN⋅m)	Mz (kN⋅m)
		Poids pro	-6.263	0.000	1.253	0.000	-11.060	0.000
Acier lamin	ine Fe360 🔻	Q 1	-12.303	0.000	2.461	0.000	-21.720	0.000
Dispositi	tion géométrique	V(0º) H1	10.203	0.000	-0.671	0.000	14.540	0.000
Ux -	-0.981 Uy 0.000 Uz 0.196 倖	V(0º) H2	0.468	0.000	3.291	0.000	2.840	0.000
Acolo de c		V(90º) H1	18.700	0.000	-3.740	0.000	9.270	0.000
Angle de n		V(180º) H1	9.677	0.000	-3.305	0.000	14.540	0.000
Dy local	ر بد Dzlocal 0 mm	V(180º) H2	-0.834	0.000	-3.218	0.000	2.840	0.000
Dx global	I 0 mm Dy global 0 mm Dz global 0 mm	V(270º) H1	20.473	0.000	-4.095	0.000	11.410	0.000
Position	du noeud dans la harre							
© Noe	beud initial O Noeud intérieur							
Lisison ii	intérieure							
C Artic	iculée							
	-	L						
Accepter								Annuler

Fig. 3.16

📲 Éditer la géométrie du noe	ud (Noeud 1)							- • •
Nombre de noeuds égaux.	4							3
Barre Barre Barre 2 - IPE 300 Barre 2 - IPE 300								,
	- \hat{k}_{z} : Description de la barre	Efforts d	ans les ax	es locaux (de la barr	e		
		Les effort calcul.Av réalisera	s introduits d ec la définitio a transformat	pivent être d in de la posi ion des effo	lans les axe tion de la b rts adéquat	es locaux de la arre par rappo e pour calcule	a barre du mod rt au noeud, le er l'assemblage	èle de programme e.
	Profil IPE 300 V	Hypothè	e N(kN)	Vy (kN)	Vz (kN)	Mt(kN·m)	My(kN⋅m)	Mz (kN⋅m)
	Acier laminé Fe360 V	Poids pro	ore -6.26	3 0.000	1.253	0.000	-11.060	0.000
		Q 1	-12.30	3 0.000	2.461	0.000	-21.720	0.000
		V(0*) H1	9.67	0.000	-3.305	0.000	14.540	0.000
	UX 0.381 UY 0.000 UZ 0.136	- V(902) H1	-0.034	0.000	-3.210	0.000	9 270	0.000
	Angle de rotation 0.0 degrés	V(180°) H	1 10.20	3 0.000	-0.671	0.000	14 540	0.000
	Dy local 0 mm Dz local 0 mm	V(180º) H	2 0.46	3 0.000	3.291	0.000	2.840	0.000
	Dx global 0 mm Dy global 0 mm Dz global 0 mm	V(270º) H	1 20.473	3 0.000	-4.095	0.000	11.410	0.000
	Position du noeud dans la barre Noeud intial Noeud intérieur Noeud final							
	Articulée Incastrée							
Accepter								Annuler

Fig. 3.17

3.4.2. Nœud 2 (Poteau-Poutres)

Sélectionnez maintenant le nœud 2 et utilisez de nouveau l'option Éditer la géométrie du nœud du menu Données générales.

👔 Éditer la géométrie du noeud (Noeud 2)							- • ×	
Nombre de noeuds égaux.							C	٥
Image: Contract optimized Image: Contrel optimized							,	
- ¹ 4								
Description de la barre E	Efforts dans l	les axes l	locaux d	le la barre	e			
Série de profils 😒 🔤 🖉 🖉 🖉 Avec jarret inférieur	Les efforts introduits doivent être dans les axes locaux de la barre du modèle de calcul Avec la définition de la position de la barre par rapport au noeud, le programme réalisera la transformation des efforts adéquate pour calculer l'assemblage.							
Profil 😵 🚽 🚺	Hypothèse	N (kN)	Vy (kN)	Vz (kN)	Mt (kN·m)	My(kN⋅m)	Mz(kN⋅m)	
Asimbolis (F. 200	Poids propre	0.000	0.000	0.000	0.000	0.000	0.000	
Acier iamine Fe360 V	Q 1	0.000	0.000	0.000	0.000	0.000	0.000	
Disposition géométrique	V(0º) H1	0.000	0.000	0.000	0.000	0.000	0.000	
Ux 0.000 Uy 0.000 Uz 1.000 🖛	V(0º) H2	0.000	0.000	0.000	0.000	0.000	0.000	
Anale de ratation 90.0 degrés	V(90°) H1	0.000	0.000	0.000	0.000	0.000	0.000	
	V(180º) H1	0.000	0.000	0.000	0.000	0.000	0.000	
	V(180=) H2	0.000	0.000	0.000	0.000	0.000	0.000	
Dx global 0 mm Dy global 0 mm Dz global 0 mm	V(2/0-)111	0.000	0.000	0.000	0.000	0.000	0.000	
Position du noeud dans la barre								
Noeud initial Noeud intérieur Noeud final								
Liaison intérieure								
Articulée Incastrée								
Accepter							Annuler	

Fig. 3.18

Commencez par décrire la Barre 1, qui correspond au Poteau de l'assemblage. Cette barre est un HEB 300 ; pour l'éditer, sélectionnez la série et le profilé de la série dans le paragraphe **Description de la barre**. Après avoir accepté, vous pourrez définir le Poteau comme étant un HEB 300, en laissant pour le reste les valeurs par défaut, sélectionnez ensuite la Barre 2, la poutre assemblée à l'aile du poteau. De la même manière, définissez cette poutre comme un IPE 300 et, dans le paragraphe de disposition géométrique, indiquez l'inclinaison de la barre par rapport au plan horizontal. Cette dernière étape peut être réalisée de deux manières différentes : en indiquant le vecteur directeur de la barre ou en indiquant les angles définissant la direction en cliquant sur le bouton de la flèche bleue et en indiquant que l'angle sur le plan horizontal est de 11,3°.

Accepter	Annuler					
Angle d'élévation par rapport au plan horizontal	11.30	degrés				
Angle dans le plan horizontal	0.00	degrés				
Assistant pour le calcul de la direction de la barre						

Une fois le profilé et la disposition définis, introduisez les charges suivantes sur la Barre 2 :

Barre 2	N	Vy	Vz	Mt	My	Mz
Poids propre	-8.269	0.000	-8.930	0.00	26.73	0.00
Q	-16.243	0.000	-17.539	0.00	52.51	0.00
V(0°) H1	10.203	0.000	15.298	0.00	-44.08	0.00
V(0°) H2	0.468	0.000	-0.588	0.00	-11.03	0.00
V(90°) H1	18.700	0.000	13.144	0.00	-36.69	0.00
V(180°) H1	9.677	0.000	11.769	0.00	-28.92	0.00
V(180°) H2	-0.834	0.000	3.587	0.00	1.50	0.00
V(270°) H1	20.473	0.000	15.094	0.00	-42.39	0.00

Sélectionnez la Barre 3 et indiquez de la même façon que pour les précédentes qu'il s'agit d'un IPE 100 et, dans la liaison intérieure, indiquez qu'elle est **Articulée** puis définissez les charges suivantes :

Barre 3	Ν	Vy	Vz
Poids propre	0.495	0.000	-0.159
Q	0.919	0.000	0.000
V(0°) H1	20.626	0.000	0.000
V(0°) H2	20.718	0.000	0.000
V(90°) H1	-4.141	0.000	0.000
V(180°) H1	18.994	0.000	0.000
V(180°) H2	19.961	0.000	0.000
V(270°) H1	-5.578	0.000	0.000

Pour finir, définissez la Barre 4 de la même manière que la précédente IPE 100 et avec liaison intérieure **Articulée**. Cette fois, pour la position du nœud dans la barre, indiquez qu'il s'agit d'un nœud final et modifiez le signe de la composante Uy du vecteur directeur de la barre afin de coïncider avec le logiciel Structures 3D à partir duquel ont été obtenus les efforts.

Barre 4	N	Vy	Vz
Poids propre	0.493	0.000	0.159
Q	0.915	0.000	0.000
V(0°) H1	20.537	0.000	0.000
V(0°) H2	20.628	0.000	0.000
V(90°) H1	-4.841	0.000	0.000
V(180°) H1	18.915	0.000	0.000
V(180°) H2	19.878	0.000	0.000
V(270°) H1	-4.837	0.000	0.000

Une fois définies la géométrie et les charges, le nœud est totalement défini pour pouvoir appliquer l'assemblage.

Téditer la géométrie du noeud (Noeud 2)							- • ×
Nombre de noeuds égaux. 8							C
Image: Solution of the second sec	TO 2	"					•
- <							
Description de la barre	Efforts dans	les axes l	locaux de	la barre			
Série de profils HEB C Avec jarret inférieur	Les efforts introduits doivent être dans les axes locaux de la barre du modèle de calcul. Avec la définition de la position de la barre par rapport au noeud, le programme réalisera la transformation des efforts adéquate pour calculer l'assemblage.						
	Hypothèse	N (KN)	Vy(kN) V	Vz (kN)	Mt (kN·m)	My (kN·m)	Mz (kN·m)
Acier laminé Fe360 💌	Poids propre	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.000	0.000	0.000	0.000	0.000
	V(0°) H2	0.000	0.000	0.000	0.000	0.000	0.000
	V(90 ^e) H1	0.000	0.000	0.000	0.000	0.000	0.000
Angle de rotation 90.0 degrés	V(180º) H1	0.000	0.000	0.000	0.000	0.000	0.000
Dy local 0 mm Dz local 0 mm	V(180º) H2	0.000	0.000	0.000	0.000	0.000	0.000
Dx global 0 mm Dy global 0 mm Dz global 0 mm	V(270º) H1	0.000	0.000	0.000	0.000	0.000	0.000
Position du noeud dans la barre Noeud initial Noeud intérieur Liaison intérieure Articulée Encastrée							
Accepter							Annuler

Fig. 3.20

Éditer la géométrie du noe	eud (Noeud 2)						[- • ×
Nombre de noeuds égaux.	8							Q
								Þ
	. <							
	Description de la barre	Efforts dar	ns les axes	locaux d	le la barro	е		
	Série de profils IPE	Les efforts in calcul.Avec réalisera la t	ntroduits doiv la définition ransformatio	vent être da de la posit n des effor	ans les axe ion de la ba ts adéquate	s locaux de la arre par rappo e pour calcule	barre du mod t au noeud, le r l'assemblage	ièle de programme a.
	Profil IPE 300 🗸 🚺	Hypothè	N (kN)	Vy (kN)	Vz (kN)	Mt (kN·m)	My(kN·m)	Mz (kN⋅m)
		Poids pro	-8.269	0.000	-8.930	0.000	26.730	0.000
	Acier laminė Fe360 V	Q 1	-16.243	0.000	-17.539	0.000	52.510	0.000
	Disposition géométrique	V(0º) H1	10.203	0.000	15.298	0.000	-44.080	0.000
	Ux 0.981 Uy 0.000 Uz 0.196	V(0º) H2	0.468	0.000	-0.588	0.000	-11.030	0.000
	Apole de rotation 0.0 degrée	V(90º) H1	18.700	0.000	13.144	0.000	-36.690	0.000
	+ + +	V(180º) H1	9.677	0.000	11.769	0.000	-28.920	0.000
	Dy local 0 mm Dz local 0 mm	V(180º) H2	-0.834	0.000	3.587	0.000	1.500	0.000
	Dx global 0 mm Dy global 0 mm Dz global 0 mm	V(2/0 ²) H1	20.473	0.000	15.094	0.000	-42.390	0.000
	Position du noeud dans la barre Noeud initial Noeud intérieur Noeud final Uaison intérieure Ativitée Reportation							
Accepter								Annuler

Fig. 3.21

ži Éditer la géométrie du noe	eud (Noeud 2)		ſ	
Nombre de noeuds égaux.	8			۷
Bare Bare Bare 1 - HE 300 B Bare 2 - IPE 300 Bare 3 - IPE 100 Bare 4 - IPE 100		arre 2		•
	- C	76 de des las mosta en de la barra		
	Série de profils IPE V C Avec jarret inférieur	Les efforts introduits doivent être dans les axes locaus calcul.Avec la définition de la position de la barre par réalisera la transformation des efforts adéquate pour c	x de la barre du moc rapport au noeud, le alculer l'assemblage	lèle de 3 programme 9.
	Profil IPE 100 - (1)	Hypothèse	N (kN) Vy (kN) Vz (kN)
		Poids propre	0.495 0.0	00 -0.159
	Acier laminė Fe360 -	Q 1	0.919 0.0	000.0 00
	Disposition géométrique	V(0º) H1	20.626 0.00	000.0 00
	Ux 0.000 Uy -1.000 Uz 0.000 倖	V(0º) H2	20.718 0.00	000.0 00
		V(90º) H1	-4.141 0.0	000.0 00
	Angle de rotation 0.0 degres	V(180º) H1	18.994 0.0	000.0 OC
	ن يد يا Dylocal 0 mm Dzlocal 0 mm	V(180º) H2	19.961 0.0	000.0 00
	Dx global 0 mm Dy global 0 mm Dz global 0 mm	V(270º) H1	-5.578 0.00	000.0
	Position du noeud dans la barre Noeud initial Noeud intérieur Noeud final Liaison intérieure Articulée Encastrée			
Accepter		<u></u>		Annuler

Fig. 3.22

Ži Éditer la géométrie du noeud (Noeud 2)			
Nombre de noeuds égaux. 8			0
Image: Constraint of the second se	R 🖲 🖬 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		•
Description de la	i barre Efforts dans les axes locaux de la barre	; [
Série de profils	Image: Second	 locaux de la barre du modèle de irre par rapport au noeud, le programme pour calculer l'assemblage. 	me
Profil	IPE 100 🗸 🚺 Hypothèse	N (kN) Vy (kN) Vz (k)	N)
	Poids propre	0.493 0.000 0.1	159
Acier laminé Fe360	Q1	0.915 0.000 0.0	000
Disposition géom	vétrique V(0º) H1	20.537 0.000 0.0	000
Ux 0.000 U	Jy -1.000 Uz 0.000 💠	20.628 0.000 0.0	000
Apole de retation	V(90 [®]) H1	-4.841 0.000 0.0	000
Angle de totation	0.0 degres + + + V(180°) H1	18.915 0.000 0.0	000
Dy local	0 mm Dz local 0 mm L J V(1809) H2	19.878 0.000 0.0	000
Dx global	0 mm Dy global 0 mm Dz global 0 mm V(2/0 ^e) H1	-4.837 0.000 0.0	000
Position du noeu	d dans la barre		
Noeud initial	○ Noeud intérieur		
Liaison intérieure			
Articulée	◯ Encastrée		
Accepter		Annul	ler

Fig. 3.23

Une fois les données des nœuds définies, utilisez l'option **Dimensionner** du menu **Données générales** en indiquant de dimensionner tous les assemblages de l'ouvrage.

Fig. 3.24

Fig. 3.25

Fig. 3.26

3.5.Édition de l'assemblage

Les assemblages visualisés sont ceux dimensionnés par le logiciel à partir des données introduites. Si vous souhaitez les modifier, utilisez l'option **Éditer l'assemblage appliqué au nœud** du menu **Données générales**.

Fig. 3.27

Lors de l'édition de l'assemblage du nœud 2, vous verrez apparaître la fenêtre de l'éditeur des assemblages. La partie gauche de cette fenêtre contient la liste de composants qui interviennent dans l'assemblage et dans chacun d'eux l'option pour les éditer ; à droite de cette liste, vous verrez apparaître une zone graphique affichant une vue 3D avec toutes les modifications effectuées dans le nœud. Sous la zone graphique, se trouve une liste d'incidents du nœud tandis que la partie supérieure contient les boutons **Dimensionner**, **Vérification**, **Récapitulatif complet du nœud** et **Détails**.

Modifiez l'assemblage, en encastrant les IPE300-HEB300 et en articulant les IPE 100. Pour cela, vous devez éditer la poutre(a) IPE 300 et désactiver l'option assemblage boulonné.

Éditer l'union appliquée au noeud (Noeud 2)				
Composants		đ	🖼 🗷 🖂 🖉 🚱 🖉 🥒 🖓 🖓	
Poteau HE 300 B	2	Ĵ		4
Recoupe à l'extremité	0	ð		
Tôle de renfort	Ø	Q		
Poutre IPE 300	Ø	888		
Soudures	2			
Platine frontale			Poutre IPE 300	
Dimensions: 300x435x20 (Fe360) Vis: 6 x EN 14399-3-M30x85-10.9-HR	2		✓ Assemblage soudé	
Poutre IPE 80	2		Soudure de l'âme	
Platine latérale			Epaisseur de gorge 3 mm Exécution des soudures En usine 🔻	
Dimensions: 160x55x8 (Fe360) Vis: 3 x EN 14399-3-M12x35-10.9-HR	2	H	☑ Longueur 254 mm	
Poutre IPE 100	2		Soudure des ailes	
Platine latérale			Supérieure	
Dimensions: 160x70x8 (Fe360) Vis: 3 x EN 14399-3-M12x35-10.9-HR	2		Epaisseur de gorge 6 mm Exécution des soudures En usine 🔻	
			Epaisseur de gorge 6 mm Exécution des soudures En usine	
			Assemblage boulonné	
			Recoupe à l'extremité	
		-		
ncidences				
Description				
I n'y a pas d'incident.				
			Accepter	
Accenter				Annuler

Fig. 3.28

Utilisez maintenant l'option **Recoupe à l'extrémité** en indiquant que vous souhaitez une découpe selon l'IPE300, le poteau sera recoupé par un plan parallèle à l'aile de la poutre.

Žićditer l'union appliquée au noeud (Noeud 2)		3
Composants		0
Poteau HE 300 B		
Recoupe à l'extremité		
Tôle de renfort		
Poutre IPE 300		
Poutre IPE 80		
Platine latérale		
Dimensions: 160x55x8 (Fe360) Vis: 3 x EN 14399-3-M12x35-10.9-HR		
Poutre IPE 100		
Platine latérale		
Dimensions: 160x70x8 (Fe360) Vis: 3 x EN 14399-3-M12x35-10.9-HR	Poutre IPE 300 B: Recoupe à l'extremité	
	Sans recoupe	
	Selon pièce 'Poutre IPE 300'	
	Selon pièce 'Poutre IPE 100'	
	Selon pièce 'Poutre IPE 80'	
	Longueur de prolongation 21 mm	
	Accepter Annuler	
	Į.	
Incidences		
Description		
II n'y a pas d'incident.		
Accepter	Annuler	

Fig. 3.30

Vous allez maintenant devoir ajuster à la nouvelle géométrie du poteau les raidisseurs du poteau. Pour cela, éditez le poteau HEB 300.

Introduire raidisseur. Il est possible de travailler de deux manières différentes. La première consiste à sélectionner le point bleu qui se trouve à la rencontre de la poutre et du côté intérieur de l'aile du poteau et à déplacer le curseur jusqu'à l'aile opposée, et le logiciel introduira le raidisseur. La seconde consiste à sélectionner le point jaune entouré d'un cercle rouge situé à l'intersection de l'aile de la poutre et de l'aile du poteau, en approchant le curseur, apparaitront les options d'introduction. Sélectionnez ensuite le point jaune désiré de l'aile opposé.

Éditer raidisseurs. Permet d'éditer plusieurs raidisseurs en une fois, en modifiant leurs dimensions et leurs cordons de soudure.

Effacer raidisseurs.

Déplacer raidisseurs.

- Introduire renfort pour encastrement dans l'âme. Introduit un renfort vertical entre les raidisseurs horizontaux pour faciliter l'encastrement des poutres dans l'âme du poteau.
- Éditer renfort pour encastrement dans l'âme. En sélectionnant la plaque de connexion de la poutre du raidisseur, vous verrez s'ouvrir une nouvelle fenêtre dans laquelle il est possible d'éditer les dimensions de la plaque de connexion, sa position et ses soudures. De même pour le renfort.

Fig. 3.31

La partie supérieure de la fenêtre possède les options suivantes pour la modification des assemblages :

Inverser le point de vue. Cette option permet de visualiser et de modifier les éléments qui se trouvent du côté opposé à la poutre.

Générer éléments de renfort. Dans le cas où ils n'existent pas, le logiciel les génère automatiquement.

Recoupe à l'extrémité. Ouvre la fenêtre vue précédemment pour agir sur la terminaison du poteau.

Fig. 3.32

- Effacer renfort pour encastrement dans l'âme.
- Introduire plaque de renfort dans l'âme. Pour introduire un renfort, vous devez sélectionner deux raidisseurs entre lesquels sera renforcée l'âme du poteau.
- Éditer plaque de renfort dans l'âme. Cette option permet de modifier l'épaisseur, le matériau et les sou-

Effacer plaque de renfort dans l'âme.

Pour poursuivre avec notre exemple, utilisez l'option Effa**cer raidisseurs** di pour effacer le raidisseur et le réintroduire 🔁 en sélectionnant le point jaune avec le cercle

Fig. 3.34

Réintroduisez ensuite le panneau de renfort d'âme, qui a été supprimé en même temps que le raidisseur. Pour cela, sélectionnez l'option **Introduire plaque de renfort dans l'âme** et cliquez sur les deux raidisseurs l'un après l'autre.

Après avoir accepté, les changements sont enregistrés. Cliquez ensuite sur vérification pour voir s'il y a des erreurs.

Fig. 3.36

Vous pourrez observer que les soudures des raidisseurs ne conviennent pas pour les ailes du poteau et que les épaisseurs des cordons de soudure sont insuffisantes. De même pour la soudure du panneau d'âme. Pour corriger cela, rééditez le poteau HEB300 et sélectionnez avec l'option de les deux raidisseurs puis modifier l'épaisseur du cordon à 6mm.

Lancez de nouveau la vérification et vous verrez que toutes les modifications effectuées dans l'assemblage du nœud 2 conviennent.

Fig. 3.37

Sélectionnez en suite l'option puis cliquez sur le panneau pour modifier l'épaisseur de gorge à 6mm.

Vérification			×					
Élément		🛒 Voir la liste complé	ète					
Poteau HE 300 B	Zone	Vérification	*					
Poutre IPE 300 ✓ Vérifiée		Attaches soudées						
Poutre IPE 100 Vérifiée	Panier	Élancement de l'âme du poteau (NF EN 1993-1-8/NA: 2007, 6.2.6.1)						
Poutre IPE 80 Vérifiée	Panier	Panneau d.âme de poteau en cisaillement (NF EN 1993-1-8/NA:2007, 6.2.6.1)	Ξ					
✓ Vérifiée	Raidisseur inférieur	Tension de Von Mises en raidisseur (Critère de CYPE, basé sur EN 1993-1-5:2006, 10)						
✓ Vérifiée	Raidisseur supérieur	Tension de Von Mises en raidisseur (Critère de CYPE, basé sur EN 1993-1-5:2006, 10)						
✓ Vérifiée	Raidisseur inférieur	Tension de Von Mises en raidisseur (Critère de CYPE, basé sur EN 1993-1-5:2006, 10)						
✓ Vérifiée	Raidisseur supérieur	Tension de Von Mises en raidisseur (Critère de CYPE, basé sur EN 1993-1-5:2006, 10)						
✓ Vérifiée	Aile	Effort tranchant dans la semelle par les raidisseurs (Critère de CYPE, basé sur EN 1993-1-5:2006, 10)						
A 811-00	* rp + ipc +ooi		•					
1 Toutes le	s conditions sont vérifiée	S.						
Attaches so	oudées							
🔂 Apergu	avant impression 👸	Configuration 📇 Imprimer 🇰 Chercher						
			*					
Attache	es soudées							
Généra	alités (NF EN 1	993-1-8/NA:2007, 4.1(1))						
Les disp à l'EN 1	positions donnée .993-1-1 et aux	es dans ce chapitre s'appliquent aux aciers de construction soudables conformes épaisseurs de matériau de 4 mm et plus.						
Généra Des sou angle co	alités (NF EN 1 udures d'angle p ompris entre 60	993-1-8/NA:2007, 4.3.2.1(1)) euvent être utilisées pour l'assemblage de pièces lorsque les faces forment un ° et 120°.						
Longue Pour su inférieu	e ur des soudur Ipporter un effor re à 30 mm ou i	es (NF EN 1993-1-8/NA:2007, 4.5.1(2)) rt, il convient de ne pas prévoir de soudure d'angle d'une longueur efficace inférieure à 6 fois son épaisseur de gorge, en prenant la plus grande de ces deux						
valeurs								
Gorge Il convie	utile (NF EN 19 ent que la gorge	993-1-8/NA:2007, 4.5.2(2)) : utile d'une soudure d'angle ne soit pas inférieure à 3 mm.						
Résista	Résistance des soudures d'angles (NF EN 1993-1-8/NA:2007, 4.5.3)							
4.5.3.1	L Généralités							
(1) Il co directio	onvient de déter nnelle donnée e	miner la résistance de calcul d'une soudure d'angle soit par la méthode n 4.5.3.2 soit par la méthode simplifiée donnée en 4.5.3.3.						

Fig. 3.39

4. Récapitulatifs des assemblages

Pour imprimer les documents du projet, sélectionnez l'option **Imprimer > Récapitulatifs de l'ouvrage** du menu **Fichier**. Vous verrez s'ouvrir une fenêtre contenant les éléments à lister.

Fig. 4.1

Une fois la fenêtre précédente acceptée, apparaitra la fenêtre de vue préliminaire du document à lister.

Aperçu avant impression							
🖪 🖶 Q Q 🕄	K 4 22	22 d	le 30		Impression.	🏐 Imprimer page	Fermer
	Exemple	Récapitulatifs Exemple Date:24/02 Rigiditérotationnelleinitial (Nim/rad) (Kitm/rad)			Date:24/02/1 Planxz :N·m/rad]		
	Calculéepourmomentsposi	itif	43745.78	1	28205.72		
	Compartement dell'accombiane neur floxion cimple dancie plan va						
roduit par une version pour usage interme de CYPE	<u>Comportement o</u> ۵۱٫۸ ۵۹٫۰ ۹۱٫۸ ۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	Bonest 041 4 - 61540 	ge pour flexion simple dans le plan xz tai) 1 2 2 3 4 5 5 5 6 7 7 50 6 7 50 6 7 50 6 7 50 6 7 50 6 8 8 8 8 8 8 8 8 8 8 8 8 8		ad		
ž	Control (Fourier Control (Fourier Control (Fourier)) Donotic (Fourier) (Control (Fourier)) Donotic (F						
	Internalite des rightilites robition relies pour des moments positions						
	Vérification	Unités	Défavorable	Résistant	Utilis.(%)		
	Relationentrelesmodes1et3		1.47	1.80	81.77		
	Momentrésistan Capacitéderotation	kNm mRad	47.51 80.19:10	61.64	77.08		
				<u>.</u>	Page22		

Fig. 4.2

5. Plans des assemblages

Pour dessiner les assemblages du projet, sélectionnez l'option **Imprimer > Plans de l'ouvrage** du menu **Fichier**. Vous verrez s'ouvrir la fenêtre **Sélection des plans** et, lors de l'ajout d'un plan, sélectionnez simplement les échelles à appliquer aux éléments qui apparaissent dans la liste.

Fig. 5.1

Fig. 5.2