Étude environnementale réglementaire

2. BÂTIN	1ENTS	4
2.1.	B1	
	2.1.1. Données générales	. 4
	2.1.2. Vérification de la conformité réglementaire du bâtiment	4
	2.1.2.1. Impact sur le changement climatique lié aux consommations	4
	2.1.2.2. Impact sur le changement climatique lié aux composants du bâtiment	
	2.1.3. Autres indicateurs environnementaux	4
	2.1.3.1. Impact sur le changement climatique lié au bâtiment	4
	2.1.3.2. Quantité de carbone stocké dans le bâtiment	4
	2.1.3.3. Impact sur le changement climatique lié aux données environnementales par défaut	5
	2.1.4. Zones	. 5
	2.1.4.1. Z1	
	2.1.4.1.1. Données générales	5
	2.1.4.1.2. Exigences moyennes et coefficients de modulation	5
	2.1.4.1.3. Données de calcul	. 6
	2.1.4.1.3.1. Décomposition des émissions par contributeur	6
	2.1.4.1.3.2. Décomposition des émissions lcConstruction	
	2.1.4.1.3.2.1. 1. VRD (Voirie et Réseaux Divers)	
	2.1.4.1.3.2.2. 2. Fondations et infrastructure	
	2.1.4.1.3.2.3. 3. Superstructure - Maçonnerie	
	2.1.4.1.3.2.4. 4. Couverture - Etanchéité - Charpente - Zinguerie	11
	2.1.4.1.3.2.5. 5. Cloisonnement - Doublage - Plafonds suspendus - Menuiseries intérieures	13
	2.1.4.1.3.2.6. 6. Façades et menuiseries extérieures	14
	2.1.4.1.3.2.7. 7. Revêtements des sols, murs et plafonds - Chape - Peintures - Produits de décoration	16
	2.1.4.1.3.2.8. 8. CVC (Chauffage - Ventilation - Refroidissement - eau chaude sanitaire	. 18
	2.1.4.1.3.2.9. 9. Installations sanitaires	18
	2.1.4.1.3.2.10. 10. Réseaux d'énergie (courant fort)	19
	2.1.4.1.3.2.11. 11. Réseaux de communication (courant faible)	19
	2.1.4.1.3.2.12. 12. Appareils élévateurs et autres équipements de transport intérieur	20
	2.1.4.1.3.3. Décomposition des émissions IcÉnergie	20
	2.1.4.1.3.4. Décomposition du contributeur consommation et rejet d'eau	20
	2 1 4 1 3 5 Décomposition du contributeur chantier	21

Vous Date: 06/07/2022

1. PROJET

Zone climatique	H1c
Altitude	100 m

Vous Date: 06/07/2022

2. BÂTIMENTS

2.1. B1

2.1.1. Données générales

Étude environnementale réglementaire				
Nom du bâtiment	B1			
Sref totale	161.3 m ²			
SHAB totale	161.3 m² (pour logements)			

2세.2. Vérification de la conformité réglementaire du bâtiment

chapitre détaille le respect des exigences de performance environnementale, ainsi que les indicateurs pour le velet Carbone de l'arrêté de la réglementation environnementale RE2020.

Calculs réalisés par le logiciel ELODIE by CYPE version 2023.e avec le cœur de calcul COMENV du CSTB pour réaliser es simulations de la performance environnementale de la RE2020.

Use procédure d'autocontrôle a été réalisée sur cette version et les suivantes du logiciel conformément à la demande du ministère en charge de la construction et de l'habitation et du ministère en charge de l'énergie : elles sont valides pour réaliser des simulations de la performance environnementale de la RE2020. La fiche du utocontrôle est disponible sur batiment-energiecarbone.

2.1. Impact sur le changement climatique lié aux consommations

Énergie ≤ IcÉnergieMax

52.58 ≤ 130.91 kgCO2eg/m²

59.84 %

lochergie: Impact sur le changement climatique associé aux consommations d'énergie primaire.

1.2.2. Impact sur le changement climatique lié aux composants du bâtiment

IcConstruction ≤ IcConstructionMax

 $649.48 \le 657.61 \text{ kgCO2eg/m}^2$

1.24 %

IcConstruction: Impact sur le changement climatique associé aux composants du bâtiment, à leur transport, leur installation et l'ensemble du chantier de construction, leur utilisation à l'exclusion des besoins en énergie et en eau de la phase d'exploitation du bâtiment, leur maintenance, leur réparation, leur remplacement et leur fin de vie évalué sur l'ensemble du cycle de vie du bâtiment.

2.1.3. Autres indicateurs environnementaux

2.1.3.1. Impact sur le changement climatique lié au bâtiment

IcBâtiment

703.521 kgCO2eq/m²

lcBâtiment: Impact sur le changement climatique associé au bâtiment, évalué sur l'ensemble de son cycle de vie, tenant compte du stockage, pendant la vie du bâtiment, de carbone issu de l'atmosphère. Il correspond à la somme de l'impact sur le changement climatique des composants lcConstruction et des consommations d'énergie lcÉnergie ainsi que l'impact sur le changement climatique des consommations et rejets d'eau pendant l'exploitation du bâtiment.

2.1.3.2. Quantité de carbone stocké dans le bâtiment

StockC 255.932 kgC/m²

Vous Date: 06/07/2022

StockC: Impact sur le changement climatique associé au bâtiment, évalué sur l'ensemble de son cycle de vie, tenant compte du stockage, pendant la vie du bâtiment, de carbone issu de l'atmosphère. Il correspond à la somme de l'impact sur le changement climatique des composants lcConstruction et des consommations d'énergie lcÉnergie ainsi que l'impact sur le changement climatique des consommations et rejets d'eau pendant l'exploitation du hâtiment

2.1.3.3. Impact sur le changement climatique lié aux données environnementales par défaut

IcDed

455.476 kgCO2eq/m²

lcDed: Impact sur le changement climatique associé à des données environnementales par défaut et à des valeurs forfaitaires pour le calcul de l'indicateur lcConstruction.

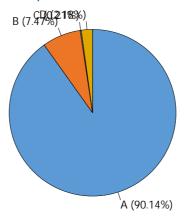
2.1.4. Zones

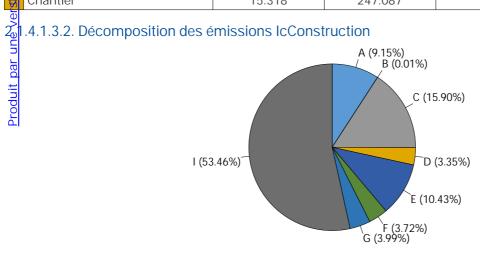
2.1.4.1. Z1

3.4.1.1. Données générales

d e	sage	Bâtiment à usage d'habitation - maison individuelle et accolée
etthe	RT	161.300

ূৰ .4.1.2. Exigences moyennes et coefficients de modulation

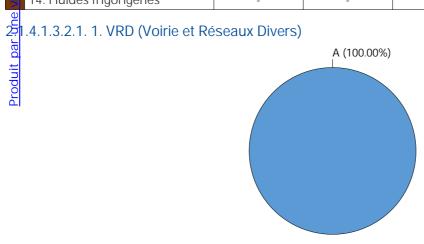

EnergieMaxMoyen	160
₩cGeo	0.1
CCombles CSurfMoy	0
SurfMoy	-0.281818
© cSurfTot	0
ConstructionMaxMoyen	640
	0
Sicombles Sicomb	-0.072
MiGeo	0
Milnfra	0
MiVrd	38.0522
MiDed	25.6427


Vous Date: 06/07/2022

2.1.4.1.3. Données de calcul

2.1.4.1.3.1. Décomposition des émissions par contributeur

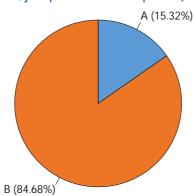
-					
inter	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)
usagae	Produits de construction et équipements	634.162	10229.036	255.932	1.12e+005
JAB C	Consommations d'énergie	52.576	848.057	-	1.07e+004
L BO	Consommations et rejets d'eau	1.464	23.607	-	2.99e+002
9	Chantier	15.318	247.087	-	2.47e+003



	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Д	1. VRD (Voirie et Réseaux Divers)	58.052	936.382	-	1.08e+004	-
В	2. Fondations et infrastructure	0.063	1.019	-	9.46e+000	-
С	3. Superstructure - Maçonnerie	100.823	1626.278	-	1.63e+004	0.276
С	4. Couverture - Etanchéité - Charpente - Zinguerie	21.238	342.564	-	3.32e+003	0.821

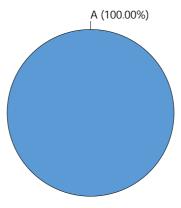
Vous Date: 06/07/2022

	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Ε	5. Cloisonnement - Doublage - Plafonds suspendus - Menuiseries intérieures	66.120	1066.518	-	1.10e+004	0.790
F	6. Façades et menuiseries extérieures	23.584	380.417	-	4.45e+003	0.139
G	7. Revêtements des sols, murs et plafonds - Chape - Peintures - Produits de décoration	25.283	407.815	255.932	5.02e+003	0.620
H 님	8. CVC (Chauffage - Ventilation - Refroidissement - eau chaude sanitaire	-	-	-	-	-
5	9. Installations sanitaires	338.998	5468.045	-	6.10e+004	1.000
'né de	10. Réseaux d'énergie (courant fort)	-	-	-	-	-
e Mie	11. Réseaux de communication (courant faible)	-	-	-	-	-
ourTusag	12. Appareils élévateurs et autres équipements de transport intérieur	-	-	-	-	-
si ≪ n p	13. Equipement de production locale d'électricité	-	-	-	-	-
Ver	14. Fluides frigorigènes	-	-	-	-	-



	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
А	1.1 Réseaux (extérieurs, jusqu'au domaine public)	58.052	936.382	-	1.08e+004	-
В	1.2 Aires de stationnement extérieures	-	-	-	-	-
С	1.3 Voirie, revêtement, clôture	-	-	-	-	-

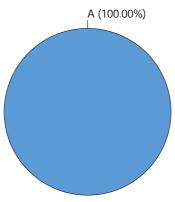
Vous Date: 06/07/2022


2.1.4.1.3.2.1.1. 1.1 Réseaux (extérieurs, jusqu'au domaine public)

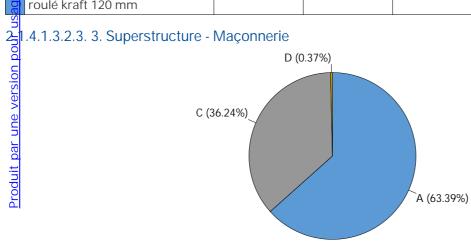
(PE

_>						
de C	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
teXne	Poteau en b?ton arm? - Poteau 60x60cm - Hauteur / Largeur	8.893	143.446	-	1.42e+003	-
B	béton non recyclé.	49.159	792.936	-	9.36e+003	-

Degat. 4.1.3.2.2. 2. Fondations et infrastructure



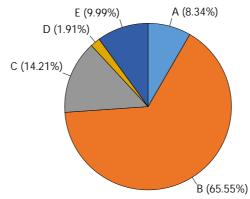
	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Α	2.1 Fondations	0.063	1.019	-	9.46e+000	-
В	2.2 Murs et structures enterrées (escalier de cave, parc de stationnement,)	-	-	-	-	-
С	2.3 Parcs de stationnement en superstructure à l'exception des garages des maisons individuelles ou accolées	-	-	-	-	-



Vous Date: 06/07/2022

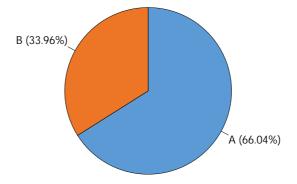
2.1.4.1.3.2.2.1. 2.1 Fondations

Ic_occ (kg eq.CO2/m²) Ic StockC Émission Contributeur Udd (kg eq.CO2/m²) (kg C/m²) (CO2 eq*) Système doublage Placostil® sur appuis et fourrures avec 0.063 1.019 9.46e+000 Placoflam® BA 15 et GR 32 roulé kraft 120 mm


	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Α	3.1 Eléments horizontaux - Planchers, dalles, balcons	63.913	1030.922	-	1.03e+004	0.242
В	3.2 Eléments horizontaux - Poutres	-	-	-	-	-
С	3.3 Eléments verticaux - Façades	36.542	589.417	-	6.01e+003	0.340
D	3.4 Eléments verticaux - Refends	0.368	5.939	-	6.00e+001	-
	3.5 Eléments verticaux - Poteaux	-	-	-	-	-
F	3.6 Escaliers et rampes	-	-	-	-	-
G	3.7 Eléments d'isolation	-	-	-	-	-

Vous Date: 06/07/2022

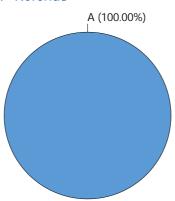
	Contributeur	I C (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Н	3.8 Maçonneries diverses	-	-	-	-	-


2.1.4.1.3.2.3.1. 3.1 Eléments horizontaux - Planchers, dalles, balcons

e interne de CYPE StockC Émission lc_occ Contributeur Udd (kg eq.CO₂/m²) (kg eq.CO2/m²) (kg C/m²) (CO2 eq*) Béton armé pour dalle de compression, C2530 XC1XC2 86.030 8.49e+002 5.334 **CEM IIA** Dalle pleine en béton d'épaisseur 0.20 m, C25/30 XC1 41.895 675.772 6.63e+003 CEM II/A-Entrevous en béton [16cm] -DONNEE ENVIRONNEMENTALE 9.080 146.457 1.55e+003 PAR DEFAUT Mortiers pour sols 1.97e+002 1.223 19.724 Planchers en béton armé -DONNEE ENVIRONNEMENTALE 6.382 102.939 1.04e+003

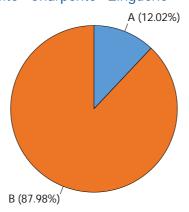
2.1.4.1.3.2.3.2. 3.3 Eléments verticaux - Façades

PAR DEFAUT



Vous Date: 06/07/2022

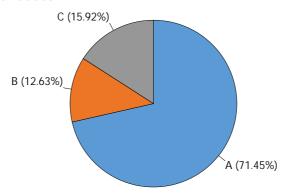
	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Α	Bloc en béton (pose à joints épais)	24.131	389.226	-	4.01e+003	-
В	Revêtement extérieur des façades en mortier d'enduit minéral - DONNEE ENVIRONNEMENTALE PAR DEFAUT	12.411	200.191	-	2.00e+003	-


2.1.4.1.3.2.3.3. 3.4 Eléments verticaux - Refends

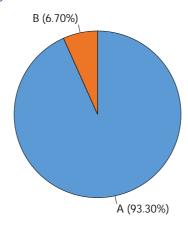
n pour usage interne de CYPE

ersio	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
u ™ e ∨	Bloc en béton (pose à joints minces)	0.368	5.939	-	6.00e+001	-

.4.1.3.2.4. 4. Couverture - Etanchéité - Charpente - Zinguerie



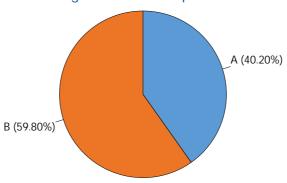
	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Α	4.1 Toitures terrasses	2.552	41.170	-	2.84e+002	-
В	4.2 Toitures en pente	18.685	301.394	-	3.03e+003	0.933
С	4.3 Eléments techniques de toiture	-	-	-	-	-


Vous Date: 06/07/2022

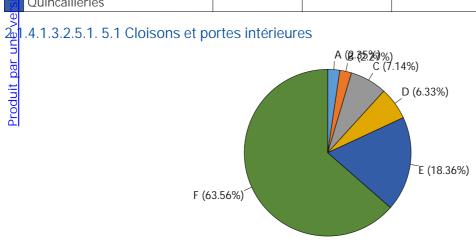
2.1.4.1.3.2.4.1. 4.1 Toitures terrasses

	빈					
	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
4	Couverture en zinc laminé naturel à joint debout (VMZINC)	1.824	29.416	-	1.60e+002	-
1	Membrane d'étanchéité Mammouth Neo	0.322	5.200	-	5.86e+001	-
(Panneaux Rigides Isolants en Polyuréthane Ep 100 mm KNAUF SteelThane	0.406	6.553	-	6.55e+001	-

December 251 .4.1.3.2.4.2. 4.2 Toitures en pente



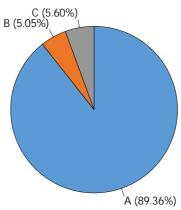
	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Α	Petits éléments de couverture en terre cuite - DONNEE ENVIRONNEMENTALE PAR DEFAUT	17.434	281.204	-	2.83e+003	-
В	Plaque de platre Placoplatre® BA13	1.252	20.189	-	2.03e+002	-



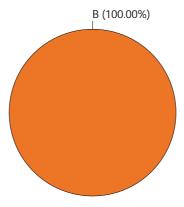
Vous Date: 06/07/2022

2.1.4.1.3.2.5. 5. Cloisonnement - Doublage - Plafonds suspendus - Menuiseries intérieures

CYPF	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
apopu.	5.1 Cloisons et portes intérieures	26.580	428.735	-	4.30e+003	0.636
acedinter	5.2 Doublages mur, matériaux de protection, isolants et membranes	39.540	637.782	-	6.67e+003	0.894
E	5.3 Plafonds suspendus	-	-	-	-	-
	5.4 Planchers surélevés	-	-	-	-	-
sim r	5.5 Menuiseries, Métalleries et Quincailleries	-	-	-	-	-


	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Α	Fourrure Stil® F530	0.624	10.064	-	7.41e+001	-
В	ISOLANT CLOISON 45 mm	0.603	9.730	-	9.75e+001	-
С	Montant Stil® M48	1.897	30.594	-	2.24e+002	-
D	Plaque de plâtre Placomarine® BA13	1.681	27.122	-	2.72e+002	-
Ε	Plaque de platre Placoplatre® BA13	4.880	78.715	-	7.90e+002	-

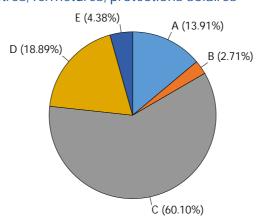
Vous Date: 06/07/2022


	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
F	Porte pleine en PVC - DONNEE ENVIRONNEMENTALE PAR DEFAUT	16.895	272.511	-	2.85e+003	-

2.1.4.1.3.2.5.2. 5.2 Doublages mur, matériaux de protection, isolants et membranes

7						
SII JII	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
ar line wersion no	Isolants thermiques et acoustiques pour murs (ITI) et cloisons en polystyrène expansé [R=5m².K/W] - DONNEE ENVIRONNEMENTALE PAR DEFAUT	35.331	569.894	-	5.99e+003	-
Proctait n	KNAUF INSULATION Laine de Verre ECOSE Soudalle LV 100mm	1.996	32.191	-	3.17e+002	-
С	Placoplatre® BA 10 10 mm	2.213	35.698	-	3.58e+002	-

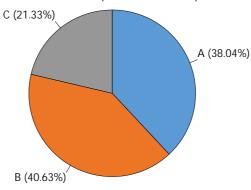
2.1.4.1.3.2.6. 6. Façades et menuiseries extérieures



Vous Date: 06/07/2022

	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Δ	6.1 Revêtement, isolation et doublage extérieur	-	-	-	-	-
R^{-1}	6.2 Portes, fenêtres, fermetures, protections solaires	23.584	380.417	-	4.45e+003	0.139
С	6.3 Habillages et ossatures	-	-	-	-	-

2.1.4.1.3.2.6.1. 6.2 Portes, fenêtres, fermetures, protections solaires

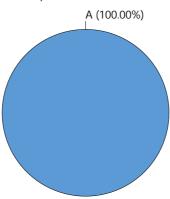


bour usage interne de CYPE			C (60.10	%)		
sion		IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
par UNe ver	Appui de baie et fenêtre en béton [A4 = 0 km] - DONNEE ENVIRONNEMENTALE PAR DEFAUT	3.281	52.922	-	6.02e+002	-
15	Fenêtres de toit	0.640	10.319	-	1.12e+002	-
Produit	Fenêtres et portes fenêtres PVC teintes claires Lapeyre Industries	14.174	228.628	-	2.56e+003	-
D	Portaro ® El30 AC41	4.456	71.870	-	9.97e+002	-
Ε	Porte extérieure mixte en aluminium et bois exotique naturellement durable	1.034	16.678	-	1.89e+002	-

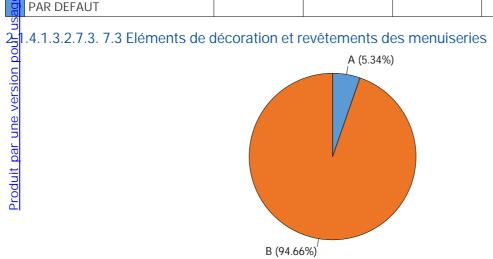
Vous Date: 06/07/2022

2.1.4.1.3.2.7. 7. Revêtements des sols, murs et plafonds - Chape - Peintures - Produits de décoration

ц	1					
P CYP	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
A	7.1 Revêtement des sols	9.619	155.152	237.468	1.96e+003	-
intorn	7.2 Revêtement des murs et plafonds	10.272	165.683	-	1.99e+003	1.000
SAMA	7.3 Eléments de décoration et revêtements des menuiseries	5.392	86.979	18.464	1.08e+003	1.000



	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Α	Carreaux céramiques produits par NOVOCERAM	10.780	173.874	-	1.85e+003	-
В	Parquet massif en chêne, épaisseur 14mm, fabriqué en France	-1.161	-18.722	237.468	1.05e+002	-


Vous Date: 06/07/2022

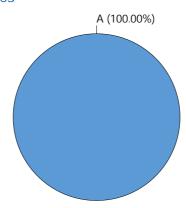
2.1.4.1.3.2.7.2. 7.2 Revêtement des murs et plafonds

YPE

7	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
	Revêtement pour murs et plafonds en papier-peint - DONNEE ENVIRONNEMENTALE PAR DEFAUT	10.272	165.683	-	1.99e+003	-

	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Α	Plinthe en bois massif [haut. 7cm et ép. 1,4cm] [Gestion durable] - DONNEE ENVIRONNEMENTALE PAR DEFAUT	0.288	4.643	18.464	7.80e+001	-
В	Plinthe en céramique [haut. 7cm et ép. 1,4cm] - DONNEE ENVIRONNEMENTALE PAR DEFAUT	5.105	82.336	-	9.98e+002	-

Vous Date: 06/07/2022

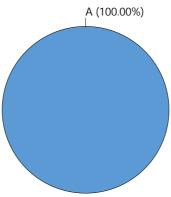

2.1.4.1.3.2.8. 8. CVC (Chauffage - Ventilation - Refroidissement - eau chaude sanitaire

	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
A	8.1 Equipements de production (chaud/froid) [Hors cogénération]	-	-	-	-	-
Е	8.2 Système de cogénération	-	-	-	-	-
(8.3 Systèmes d'émission	-	-	-	-	-
[8.4 Traitement de l'air et éléments de désenfumage	-	-	-	-	-
E	8.5 Réseaux et conduits	-	-	-	-	-
4	8.6 Stockage	-	-	-	-	-
6	8.7 Fluides frigorigènes	-	-	-	-	-

.4.1.3.2.8.1. 8.1 Equipements de production (chaud/froid) [Hors cogénération]

ge int	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
in poter usad	Gazole pour engins mobiles de chantier non routiers - DONNEE ENVIRONNEMENTALE CONVENTIONNELLE	-	-	-	-	-

Droduit par une value of the part of the p



	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Α	9.1 Eléments sanitaires et robinetterie	338.998	5468.045	-	6.10e+004	1.000
В	9.2 Canalisations, réseaux et systèmes de traitement	-	-	-	-	-

Vous Date: 06/07/2022

2.1.4.1.3.2.9.1. 9.1 Eléments sanitaires et robinetterie

YPE						
de C	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
i ≱ terne	Luminaires pour éclairage fonctionnel (mât inclus) - DONNEE ENVIRONNEMENTALE	338.998	5468.045	-	6.10e+004	-

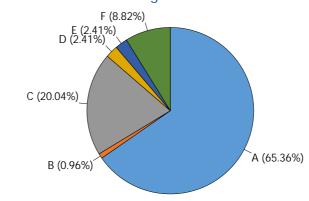
ર્કું 1.4.1.3.2.10. 10. Réseaux d'énergie (courant fort)

PAR DEFAUT

ಠ						
ion p	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
SÆS	10.1 Réseaux électriques	-	-	-	-	-
∪We \	10.2 Ensemble de dispositifs pour la sécurité	-	-	-	-	-
gar	10.3 Eclairage intérieur	-	-	-	-	-
roduit		-	-	-	-	-
E	10.5 Equipements spéciaux	-	-	-	-	-
F	10.6 Installations techniques	-	-	-	-	-

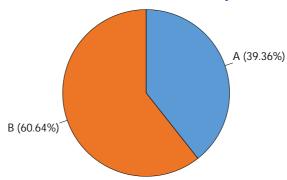
2.1.4.1.3.2.11. 11. Réseaux de communication (courant faible)

	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Д	11.1 Réseaux électriques et de communications	-	-	-	-	-
В	11.2 Systèmes de sécurité (personnes et bien)	-	-	-	-	-
С	11.3 Installations techniques et appareillages	-	-	-	-	-


Vous Date: 06/07/2022

2.1.4.1.3.2.12. 12. Appareils élévateurs et autres équipements de transport intérieur

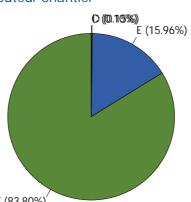
	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	StockC (kg C/m²)	Émission (CO2 eq*)	Udd
Α	12.1 Appareils élévateurs et autres équipements de transport intérieur	-	-	-	-	-


2.1.4.1.3.3. Décomposition des émissions IcÉnergie

usage interne de CYPE

_			
pour	Contributeur	lc (kg eq.CO2/m²)	Émission (CO2 eq*)
P	Chauffage - Électricité	34.363	7.01e+003
S de la	Refroidissement - Électricité	0.506	1.03e+002
6	ECS - Électricité	10.538	2.15e+003
par ur	Auxiliaires de ventilation - Électricité	1.265	2.58e+002
roduit	Auxiliaires de distribution - Électricité	1.265	2.58e+002
F	Éclairage - Électricité	4.638	9.46e+002

2.1.4.1.3.4. Décomposition du contributeur consommation et rejet d'eau


	Contributeur	IC (kg eq.CO2/m²)	IC_OCC (kg eq.CO2/m²)	Émission (CO2 eq*)
1	Consommation d'eau	0.576	9.293	1.18e+002
ı	Rejet d'eau	0.887	14.315	1.81e+002

Vous Date: 06/07/2022

2.1.4.1.3.5. Décomposition du contributeur chantier

Produit par une

L	F (83.80%)				
-	Contributeur	IC (kg eq.CO2/m²)	Ic_occ (kg eq.CO2/m²)	Émission (CO2 eq*)	
1	Consommation de carburant	-	-	-	
	Consommation d'électricité	-	-	-	
(Consommation d'eau	0.015	0.235	2.35e+000	
ı	Rejet d'eau	0.022	0.362	3.62e+000	
ı	Traitement de déchets	2.445	39.430	3.94e+002	
1	Transport des terres vers centre de traitement des déchets	12.837	207.060	2.07e+003	