

Software para Arquitetura, Engenharia e Construção

StruBIM Cantilever Walls

Manual do utilizador

Memória de cálculo

StruBIM Cantilever Walls – Memória de cálculo Manual do utilizador

IMPORTANTE: ESTE TEXTO REQUER A SUA ATENÇÃO E A SUA LEITURA

A informação contida neste documento é propriedade da CYPE Ingenieros, S.A. e nenhuma parte dela pode ser reproduzida ou transferida sob nenhum conceito, de nenhuma forma e por nenhum meio, quer seja electrónico ou mecânico, sem a prévia autorização escrita da CYPE Ingenieros, S.A.

Este documento e a informação nele contida são parte integrante da documentação que acompanha a Licença de Utilização dos programas informáticos da CYPE Ingenieros, S.A. e da qual são inseparáveis. Por conseguinte, está protegida pelas mesmas condições e deveres. Não esqueça que deverá ler, compreender e aceitar o Contrato de Licença de Utilização do software, do qual esta documentação é parte, antes de utilizar qualquer componente do produto. Se NÃO aceitar os termos do Contrato de Licença de Utilização, devolva imediatamente o software e todos os elementos que o acompanham ao local onde o adquiriu, para obter um reembolso total.

Este manual corresponde à versão do software denominada pela CYPE Ingenieros, S.A. como StruBIM Cantilever Walls. A informação contida neste documento descreve substancialmente as características e métodos de manuseamento do programa ou programas que acompanha. O software que este documento acompanha pode ser submetido a modificações sem prévio aviso.

Para seu interesse, a CYPE Ingenieros, S.A. dispõe de outros serviços, entre os quais se encontra o de Actualizações, que lhe permitirá adquirir as últimas versões do software e a documentação que o acompanha. Se tiver dívidas relativamente a este texto ou ao Contrato de Licença de Utilização do software, pode dirigir-se ao seu Distribuidor Autorizado Top-Informática, Lda., na direcção:

Rua Comendador Santos da Cunha, 304 4700-026 Braga Tel: 00 351 253 20 94 30 http://www.topinformatica.pt

Traduzido e adaptado pela Top-Informática, Lda para a © CYPE Ingenieros, S.A. Maio 2023

Windows® é marca registada de Microsoft Corporation®

Índice

1. Memória de cálculo	.6
1.1. Partes do muro	. 6
1.2. Geometria	. 6
1.3. Acções	. 7
1.4. Resultados	. 7
1.4.1. Alçado do muro 1.4.1.1. Verificação ao corte em arrangue muro	. 7 . 8
1412 Espeseura mínima	Q
1.4.1.3. Ouantidado mínima goomótrica	g
1.4.1.4. Quantidade mínima geometrica	0
1.4.1.5. Quantidade mínima mecanica	0
1.4.1.5. Quantidade maxima geometrica	8
1.4.1.6. Separaçao minima de armaduras	. 8
1.4.1.7. Separação máxima de armaduras	. 8
1.4.1.8. Verificação de flexão composta	. 8
1.4.1.9. Verificação de esforço transverso	. 8
1.4.1.10. Verificação de fendilhação	. 9
1.4.1.11. Verificação de comprimentos de emenda	. 9
1.4.1.12. Verificação da amarração da armadura base no coroamento	. 9
1.4.2. Sapata do muro	. 9
1.4.2.1. Verificação de estabilidade derrube/deslizamento	. 9
1.4.2.2. Tensões sobre o terreno	. 9
1.4.2.3. Altura mínima	. 9
1.4.2.4. Recobrimento mínimo	10
1.4.2.5. Comprimentos de amarração	10
1.4.2.6. Diâmetro mínimo dos varões	10
1.4.2.7. Separação máxima entre varões	10
1.4.2.8. Separação mínima entre varões	10
1.4.2.9. Flexão na sapata	10
1.4.2.10. Esforço transverso	10
1.4.2.11. Quantidade geométrica e mecânica	10
1.4.2.12. Dimensionamento da geometria	10

Nota prévia

Devido à implementação de novas funcionalidades e melhorias no StruBIM Cantilever Walls, é possível que pontualmente surjam imagens ou textos que não correspondam à versão atual. Em caso de dúvida consulte a Assistência Técnica em <u>https://www.topinformatica.pt/</u>.

StruBIM Cantilever Walls – Memória de cálculo Manual do utilizador

Apresentação

Programa desenvolvido para o cálculo de muros de contenção de terras que trabalham em consola. Realiza o pré-dimensionamento automático da geometria, o cálculo da armadura do muro e o dimensionamento geométrico e de armaduras da sapata do muro.

A introdução de dados pode, por opção do utilizador, ser realizada através de um assistente, este é de extrema importância nos casos correntes, optimiza o tempo de introdução de dados.

O utilizador pode modificar qualquer tipo de dados sempre que o deseje.

Após a análise global do elemento estrutural o programa efectua o dimensionamento e apresenta de imediato a respectiva listagem de verificações efectuadas.

O programa contém opções para edição das peças desenhadas. Permite ainda gerar as peças desenhadas, e também as escritas, para ficheiros que poderão ser editados posteriormente e trabalhados por cada engenheiro.

Este manual contém uma **Memória de Cálculo**, onde se explica a metodologia seguida pelo programa bem como a **implementação de normas** com as quais pode calcular.

CYPE

1. Memória de cálculo

1.1. Partes do muro

Considera-se que o muro é formado por várias partes diferenciadas:

- Muro. Alçado do muro desde o arranque até ao coroamento.
- Terrenos. Maciço terroso, num ou em vários estratos, no tardoz e face exterior com possível estrato rochoso e/ou nível freático.
- Fundação. Sapata contínua sob o muro. A sapata pode ter tacão para a sua estabilidade ao deslizamento.

1.2. Geometria

Definem-se os seguintes termos:

- Tardoz. Face em contacto com o terreno.
- Face exterior. Face livre, embora em alguns casos possa conter algum maciço terroso.
- Altura. Medida vertical entre arranque e coroamento.
- Espessura superior. Largura no coroamento.
- Espessura inferior. Largura no arranque (deve ser maior ou igual à espessura superior). Podem ser diferentes, logo é possível definir muros de espessura variável. Ao definir a geometria do muro, pode fixar as espessuras do tardoz, da face exterior e o plano vertical médio; neste caso medem-se parcialmente as espessuras em cada face. A soma de ambos será a espessura total.
- **Degraus**. Tramos em altura que têm uma mudança brusca de espessura. Realizam-se em substituição dos muros de espessura variável para simplificar a cofragem. Podem-se realizar para uma só face ou para ambas. A armadura interrompe-se dobrando-se e emendando-se com o tramo superior.
- Emendas. Divisão em tramos da armadura vertical, com emenda. Define-se o número de tramos e a sua altura. A utilidade encontra-se em muros altos de espessura constante ou variável, nos quais é complexo e perigoso colocar a armadura em toda a sua altura e as cofragens podem não dispor da altura suficiente, sendo aconselhável a sua execução por tramos. Por exemplo, é habitual que a altura de cofragens seja de 2.50 m e para construir um muro de 7 m de altura total se devam criar fases de 2.50 m, 2.50 m, 2 m.

As sapatas contínuas de betão armado sob o muro são de altura constante existindo três tipos de sapatas:

- Com consolas em ambos os lados
- Com consola à direita
- Com consola à esquerda

Em qualquer dos tipos anteriores pode-se definir um tacão.

O estado geral de acções pode ser o do seguinte esquema:

1.3. Ações

Dado que é possível definir maciços terrosos em ambos os lados, é evidente que para cada estado ou situação que se possa considerar, existirá um lado que empurra mais que o outro. Esse lado que empurra mais, produz uma 'acção' sobre o muro. O lado que empurra menos, produz uma 'reacção', uma vez que o muro tende a deslocar-se para esse lado, comprimindo-o.

Poderão portanto desenvolver-se os tipos de impulso, activo ou passivo, que se pormenorizam:

- Impulso activo. O terreno empurra o muro permitindo as suficientes deformações na direcção do impulso para levar o terreno ao seu estado de rotura. É o caso habitual, quando se desenvolve uma 'acção' do terreno (o valor por defeito é 'acção').
- Impulso em repouso. É o caso de muros cujo coroamento está impedido por outros elementos, por exemplo os muros de cave com uma laje no coroamento. O valor do impulso é maior que o activo. Não é recomendável a sua utilização no programa, já que é impossível impedir o deslocamento no coroamento, podendo em casos especiais simular o impedimento do coroamento através de uma carga horizontal aplicada no coroamento, se previamente se assegurou que essa carga anula os deslocamentos do coroamento.
- Impulso passivo. Quando o muro se desloca contra o terreno, comprime-o e este reage. Dependendo
 do deslocamento do muro, e do tipo de terreno pode-se desenvolver uma % deste impulso passivo, ou
 a sua totalidade, o que exige grandes deformações, excepto se o terreno for muito rígido (muito
 compacto), ou se for rocha. É sempre uma 'reacção'. Não se desenvolve na sua totalidade, pelo que se
 recomenda considerar uma % do mesmo. O seu valor é muito maior que o activo. Deve-se considerar
 com prudência.

Associa-se a este impulso a definição da 'cota de impulso passivo', por baixo da qual se considera, e nunca por cima. A cota de arranque de um muro é zero '0' e a cota do impulso passivo também é zero '0'. Isto é, se activar uma % do impulso passivo, só actuará na altura da sapata. Se aumentar a cota do impulso passivo, pode-se dar o paradoxo de que a resultante do passivo seja maior que a do activo, o que não é lógico.

Reveja os diagramas de esforços transversos para que isto não se produza, ou deixe sempre a cota do impulso passivo por baixo da cota de arranque do muro.

• Sem impulsos. Esta situação permite que o terreno em causa não desenvolva nenhum tipo de impulso e só se considere o seu peso como componente vertical gravitando sobre a sapata.

Para obter informação sobre o cálculo destes impulsos, consulte o ponto Anexo cálculo de impulsos.

1.4. Resultados

1.4.1. Alçado do muro

Pode consultar a listagem de verificações no ecrã ao utilizar as opções de dimensionamento ou verificação do programa. Junto a cada verificação indica-se o capítulo correspondente da norma que se deve cumprir.

8

Nos casos em que não exista um critério a cumprir, utilizar-se-ão os das normas de betão espanholas e bibliografia de reconhecido prestígio.

É por isso muito importante que reveja a listagem de verificações, pois ela indicará todas as realizadas, os valores de cálculo e os da norma.

Consulte-a sempre que o considere necessário e, na dúvida, liste-a para se assegurar do cumprimento de todos os pontos.

Os estados a verificar são:

1.4.1.1. Verificação ao corte em arranque muro

Verifica-se se o esforço de corte calculado na ligação entre o alçado do muro e a sapata é menor do que o esforço de corte resistente nesse mesmo ponto, tendo em conta a secção de betão e quantidade de armadura.

1.4.1.2. Espessura mínima

Limita-se a espessura mínima segundo a norma.

1.4.1.3. Quantidade mínima geométrica

De forma a controlar-se a fissuração devido a deformações originadas pelos efeitos de temperatura e retracção, impõem-se quantidades mínimas que variam segundo a norma.

1.4.1.4. Quantidade mínima mecânica

Para a armadura vertical exigem-se quantidades mínimas mecânicas para que não se produzem roturas frágeis aquando da fendilhação da secção, devido aos esforços de flexão composta.

1.4.1.5. Quantidade máxima geométrica

Impõe-se um máximo para a quantidade de armadura vertical total.

1.4.1.6. Separação mínima de armaduras

Para se permitir uma correcta betonagem, exige-se uma separação mínima entre armaduras, segundo a norma.

1.4.1.7. Separação máxima de armaduras

Estabelecem-se estes limites para que não existem zonas sem armadura.

1.4.1.8. Verificação de flexão composta

A verificação resistente da secção realiza-se utilizando como lei constitutiva do betão, o diagrama de tensão-deformação simplificado parábola-rectângulo, apto para delimitar a zona de esforços de rotura à flexão composta da zona de não rotura de uma secção de betão armado. A verificação à flexão composta está implementada para todas as normas existentes no programa com as respectivas indicações relativas à integração de tensões na secção que delimitam as máximas deformações permitidas aos materiais que constituem a secção (betão e aço). Ao realizar a verificação à flexão composta tem-se em atenção que as armaduras se encontram com os devidos comprimentos de amarração com o fim de poder-se considerá-las efectivas no cálculo à flexão composta. Aliás, como os esforços devidos à flexão composta actuam conjuntamente com o esforço transverso, produz-se uma iteração entre ambos os esforços. Este fenómeno tem-se em conta decalando o diagrama de momentos flectores uma determinada distância no sentido que resulte mais desfavorável, igual à altura útil.

1.4.1.9. Verificação de esforço transverso

A verificação deste estado limite último realiza-se sem considerar armadura transversal na secção, apenas se considera a contribuição do betão na resistência ao corte. O valor da contribuição do betão ao esforço transverso equaciona-se a partir de um termo V_{cu} que se obtém de maneira experimental. Este termo inclui-se habitualmente dentro da verificação do corte por esgotamento da tracção na alma da secção. Na aplicação, consideraram-se as distintas expressões que avaliam esta componente V_{cu} segundo a norma escolhida.

1.4.1.10. Verificação de fendilhação

O estado limite de fendilhação é um estado limite de utilização que se verifica com a finalidade de verificar o aparecimento de fendas nas estruturas de betão armado. No caso dos muros, o controlo da fendilhação é muito importante pois esta produz-se na face do tardoz. Essa é uma zona que não se pode observar habitualmente, podendo ocorrer a corrosão das armaduras. Desta forma, pode ocorrer a deterioração do muro sem que se consiga apreciar os efeitos negativos actuantes. Trata-se de controlar as fendas originadas devido às acções que directamente actuam sobre o muro (terreno, nível freático, sobrecargas, etc.) e não as fendas devidas à retracção e temperatura, que são tidas em conta ao considerar os mínimos geométricos

Para o cálculo da abertura limite de fendas, seguiu-se um processo simplificado em flexão simples, com o qual se obtém resultados do lado da segurança relativamente aos esforços obtidos através dos métodos usados na flexão composta.

Para as distintas normas implementadas, segue-se o método geral de cálculo de abertura de fendas e compara-se os resultados obtidos com os limites impostos por cada norma, segundo o tipo de exposição ou ambiente, na qual se encontra inserida a estrutura. Enquanto que para a verificação à flexão composta e esforço transverso se utilizam as combinações de acções correspondentes aos estados limites últimos, no caso da fissuração aplicam-se as combinações de acções correspondentes às acções características. O programa actua calculando a abertura característica de fenda W_k para todas as hipóteses.

Repete-se o cálculo a diferentes cotas do muro procedendo-se da mesma forma nas verificações à flexão composta e de esforço transverso. Determina-se o valor mais desfavorável e compara-se com o valor limite de abertura de fenda, indicado por cada norma. Deste modo é possível determinar se cumpre ou não este estado limite de utilização.

1.4.1.11. Verificação de comprimentos de emenda

O cálculo dos comprimentos de emendas realiza-se segundo as distintas normas implementadas.

1.4.1.12. Verificação da amarração da armadura base no coroamento

O cálculo dos comprimentos de amarração da armadura base no coroamento, realiza-se segundo as distintas normas implementadas.

1.4.2. Sapata do muro

A carga num muro converte-se num diagrama de cargas ao longo do muro de forma discreta. É como converter uma resultante num diagrama de tensões aplicadas ao longo da base do muro, discretizada em escalões que o programa realiza internamente, segundo as suas dimensões.

Os estados a verificar são:

1.4.2.1. Verificação de estabilidade derrube/deslizamento

Aplicando as combinações do estado limite correspondente, verifica-se se a resultante se encontra dentro da sapata, e calculam-se os coeficientes de estabilidade ao derrube e ao deslizamento.

1.4.2.2. Tensões sobre o terreno

Supõe-se um diagrama de deformação plana para a sapata, pelo que se obterão, em função dos esforços, uns diagramas de tensões sobre o terreno de forma trapezoidal. Não se admitem tracções, pelo que, quando a resultante sair do núcleo central, aparecerão zonas sem tensão. A resultante deve ficar dentro da sapata, pois ao contrário não haveria equilíbrio. Considera-se a carga permanente da sapata. Verifica-se que a tensão média não supere a do terreno e que a tensão máxima no bordo não supere numa % a média.

1.4.2.3. Altura mínima

Verifica-se a altura mínima, especificada pela norma.

1.4.2.4. Recobrimento mínimo

Verifica-se a espessura de recobrimento mínimo, especificado pela norma.

1.4.2.5. Comprimentos de amarração

Verificam-se os comprimentos de amarração das armaduras nos seus extremos, considerando-se as patilhas correspondentes a cada caso, e segundo a sua posição.

1.4.2.6. Diâmetro mínimo dos varões

Verifica-se se o diâmetro considerado não é inferior ao indicado pela norma.

1.4.2.7. Separação máxima entre varões

Estabelece-se este limite com o fim de não existirem zonas do muro sem armadura.

1.4.2.8. Separação mínima entre varões

Verificam-se as separações mínimas entre varões, segundo a norma.

1.4.2.9. Flexão na sapata

Verifica-se com a secção de referência situada a 0,15 da dimensão do muro para o seu interior. O dimensionamento à flexão obriga a dispor de altura para que não seja necessária armadura de compressão. No caso de aparecerem tracções na face superior da sapata colocar-se-á armadura superior.

1.4.2.10. Esforço transverso

A secção de referência situa-se a uma altura útil dos bordos do muro. O dimensionamento ao esforço transverso obriga a dispor de altura para que não seja necessário colocar reforço transversal.

1.4.2.11. Quantidade geométrica e mecânica

Verificam-se as quantidades mínimas, geométricas e mecânicas, especificadas pela norma.

1.4.2.12. Dimensionamento da geometria

O programa permite dimensionar a geometria do alçado do muro e da sapata.

O critério de dimensionamento para o alçado do muro é:

- Espessura superior = 0.25 (m)
- Espessura inferior = 0.11 x Altura de terras equivalente (m). O programa calcula o momento no arranque do muro produzido pelo terreno no tardoz e as cargas que possa haver sobre o terreno e no coroamento. A partir deste momento calcula-se uma altura de terreno equivalente, isto é, que produziria o mesmo momento antes calculado.

O critério de dimensionamento para a sapata é:

- Altura = maior valor dos seguintes:
 - a) 0.10 x Altura de terras equivalente (m)
 - b) 0.50 x Consola máxima (se se tiver seleccionado a opção Obra > Opções > Sapata > Dimensionar altura como > Rígida).
 - c) 0.33 x Consola máxima (se se tiver seleccionado a opção Obra > Opções > Sapata > Dimensionar altura como > Flexível).
- Consolas. O dimensionamento das consolas realiza-se de tal forma que haja equilíbrio na sapata (consola e deslizamento) e não se supere a tensão admissível do terreno.