

CYPETHERM LOADS

Ejemplo práctico

Cálculo de la carga térmica de los edificios según el Método de las Series Temporales Radiantes (RTSM), propuesto por ASHRAE.

Índice

1	Desarrollo del proyecto5				
2	Cre	aci	ón del modelo arquitectónico	6	
	2.1	BIN	/server.center	6	
	2.2	IFC	Builder	6	
	2.3	Des	scripción del edificio	9	
	2.4	Cre	ación del modelo luminotécnico	9	
3	Cre	aci	ón del modelo de cargas térmicas	11	
	3.1	Cre	ación de archivo	11	
4	Vin	cul	ación al proyecto BIM	12	
	4.1	Info	ormación del edificio	13	
5	Def	fini	ción de los recintos	14	
	5.1	Off	ice	14	
	5.2	Me	eting room	22	
	5.3	Cor	ridor	22	
	5.4	Hal	I	26	
	5.5	Ris	ers	26	
	5.6	Sta	irs	26	
	5.7	Lift		27	
	5.8	WC		27	
	5.9	Dir	ing	27	
	5.10	Тес	hnical room	30	
6	Def	fini	ción de elementos constructivos	31	
	6.1	Fac	hadas	31	
	6.1	1.1	Brick wall 13	31	
	6.′	1.2	Brick wall 17	36	
	6.2	Tab	piquería	37	
	6.2	2.1	Simple partition	3/	
	۰.۵ ۲ ۲	2.Z Cur	Isulateu partition	۵۵ مر	
	0.5 6 [:]	3ue 3.1		ود ۵۵	
	0.1			0	

	6.4 Forjados entre pisos		42	
	6.	4.1	Floor slab	43
	6.	4.2	External floor slab	45
	6.5	Cul	piertas	46
	6.6	Pue	ertas	47
	6.7	Hu	ecos acristalados	48
	6.8	Pue	entes térmicos lineales	48
7	De	fini	ción del modelo de cálculo	52
	7.1	Dat	tos del emplazamiento	52
	7.2	Ор	ciones de cálculo	54
	7.3	Hip	oótesis y Zonas térmicas	54
8	Cá	lcul	o y análisis de resultados	57
	8.1	Act	ualizar resultados	57
	8.2	Lis	tado de resultados	60
9	Ac	tual	ización y exportación del modelo BIM	61

El programa CYPETHERM LOADS permite el cálculo de las cargas térmicas de los edificios y está integrado en el flujo de trabajo Open BIM. Permite la importación y sincronización de modelos BIM (IFC4) generados por programas de CAD/BIM. Incorpora la base de datos ASHRAE Weather Data Viewer 6.0 que proporciona los datos climáticos de 8118 estaciones en todo el mundo.

Tiene varias bases de datos de materiales, entre ellas la base de datos de materiales portuguesa LNEC (Laboratório Nacional de Engenharia Civil) y la de la norma EN ISO 10456. Incorpora las normas ISO 6946 e ISO 10077-1 para el cálculo del coeficiente de transmisión térmica y la norma ISO 13370 para el cálculo de los coeficientes de transmisión térmica de elementos en contacto con el suelo.

Sombreado automático a partir de la importación IFC. Permite la detección de aristas a partir del modelo BIM y la generación automática de los correspondientes puentes térmicos lineales, en función de las soluciones constructivas adoptadas y de la descripción del edificio desde el punto de vista del análisis térmico (zonificación, descripción de los espacios, etc.).

Los coeficientes de transmisión de los puentes térmicos lineales pueden obtenerse a partir del catálogo de la norma ISO 14683 o calculados mediante un análisis por elementos finitos de acuerdo con la norma ISO 10211.

Se puede seleccionar el método de las series temporales radiantes (RTS) propuesto por ASHRAE para el cálculo de las cargas térmicas de calentamiento y enfriamiento o el descrito en la norma EN 12831 para el cálculo de las cargas térmicas de calentamiento. Este documento incluye un ejemplo práctico que permite al usuario practicar los comandos y procedimientos habituales del programa.

1 Desarrollo del proyecto

La introducción de datos se realiza mediante la vinculación a un proyecto BIM, previamente creado con un programa de generación de modelos BIM o con el programa gratuito IFC Builder.

-	
	Cuenta
	Usuario
. 8 - Ray and Charles E	Usuario
	Usuario
	۲

Se aconseja el siguiente orden de introducción de datos:

- 1. Creación del modelo arquitectónico.
- 2. **Creación del modelo de cargas térmicas**. Lectura de datos mediante la importación del modelo BIM.
- 3. **Definición de recintos**. Con las condiciones interiores de diseño.
- 4. Definición de las soluciones constructivas. Es muy útil que el usuario disponga de una biblioteca, de este modo, en la fase de importación del archivo IFC, podrá activar la opción Directorio para búsqueda de tipologías. Si los elementos constructivos definidos en el modelo BIM tienen la misma referencia de los de la biblioteca, quedarán

automáticamente definidos. Si no existe la referencia en la biblioteca, el elemento debe ser definido por el usuario, pudiendo incluso exportarlo a su biblioteca para que éste sea parte de ella y pueda ser usado en futuras obras. Todos los elementos importados se pueden editar.

- 5. **Procesamiento de aristas**. Cálculo de los coeficientes de transmisión térmica lineales de acuerdo con la configuración definida.
- 6. **Definición del modelo de cálculo**. Configuración de las opciones de cálculo y datos climáticos.
- 7. **Zonificación del edificio.** Creación de las diversas hipótesis de zonificación del edificio que se pretenden utilizar para el cálculo.
- 8. **Cálculo y análisis de resultados.** Después de presionar **Actualizar resultados** se pueden analizar los resultados, obtener los documentos de resultados y exportarlos al modelo BIM.

2 Creación del modelo arquitectónico

2.1 BIMserver.center

Este ejemplo utiliza un modelo BIM arquitectónico procedente del programa IFC Builder de CYPE, programa gratuito que permite el modelado arquitectónico.

A continuación, se explica el proceso de exportación del modelo BIM arquitectónico generando un archivo IFC en BIMserver.center, a partir de IFC Builder. Si aún no ha efectuado el registro en esta plataforma <u>http://bimserver.center/</u>, debe hacerlo para poder conectarse mediante un correo electrónico y una contraseña.

2.2 IFC Builder

Se inicia el ejemplo con el programa IFC Builder.

- Ejecute el programa IFC Builder.
- Pulse el icono 🗐 **Ejemplos.**
- Seleccione el archivo *Offices*.

• En la esquina superior derecha, pulse 🧭 Compartir y Selección de proyecto.

	Export to BIM project	×
8	BIMserver.center With BIMserver.center you can manage, share and update your architecture, engineering and construction projects in the cloud. Additionally, using Open BIM technology, they can be integrated into a collaborative, open and coordinated wo amongst all the technical designers that are part of the work team. BIMserver.center Store	orkflow
☑ Link to a	BIM project	
Project selection Remember ('Open BIM During the will be read established	Link: BIMserver.center Project: - Main (initiator): Offices Architectural Model.ifc that to able to develop the project in a coordinated manner between the different application workflow), the initial IFC file (generated by 'IFC Builder') should be saved in an empty direc consolidation process carried out by the applications, all the IFC files which constitute the p d, assuming that the project is composed of all the files in the directory to which the BIM link l,	ons tory. roject cis
Export Quantitie DXF-DWG Export te Generate	es (FIEBDC-3) Template emplates e DWG templates for floors based on the modelling that has been carried out	
<u>A</u> ccept		Cancel

• Rellene los datos de acuerdo con la siguiente figura.

New project X
Project name
Offices - Practical example
Type of project
Courses and seminars
View options
Closed
Management of collaboration requests
Description

	Export to BIM project	×
8	BIMserver.center With BIMserver.center you can manage, share and update your architecture, engineering and construction projects in the cloud. Additionally, using Open BIM technology, they can be integrated into a collaborative, open and coordinated work amongst all the technical designers that are part of the work team. BIMserver.center Store	flow
☑ Link to a	BIM project	
Remember ('Open BIM During the will be read established	Link: BIMserver.center Project: Offices - Practical Example Main (initiator): Offices Architectural Model.ifc that to able to develop the project in a coordinated manner between the different applications: vorkflow), the initial IFC file (generated by 'IFC Builder') should be saved in an empty directo consolidation process carried out by the applications, all the IFC files which constitute the proj, assuming that the project is composed of all the files in the directory to which the BIM link is .	; ry. ect
Export ☐ Quantitie DXF-DWG ☑ Export te ☐ Generate	es (FIEBDC-3) Template Implates I DWG templates for floors based on the modelling that has been carried out	
<u>A</u> ccept	Ca	ncel

Pulse en **Crear nuevo proyecto**, y establezca como nombre del proyecto "Offices – Practical example".

- Aparecerá una ventana con información de exportación, pulse **Aceptar**.
- Puede confirmar si el proyecto se encuentra en BIMserver.center presionando el icono
 de la barra de tareas de Windows junto al reloj y la fecha de su ordenador.
- Si no visualiza este icono, pulse en el menú general de CYPE en el grupo Open BIM y, a continuación, en **BIMserver.center** para activarlo.
- También puede entrar directamente en la plataforma BIMserver.center.

2.3 Descripción del edificio

El edificio de oficinas consta de 5 plantas. En la planta 0 (de la planta baja) se encuentra el comedor y una oficina. Las plantas 1 a 3 están compuestas por oficinas y salas de reuniones. Las zonas técnicas (salas de máquinas, etc.), se sitúan en la planta 4. La planta 5 corresponde a la cubierta.

2.4 Creación del modelo luminotécnico

El programa CYPETHERM LOADS permite la introducción manual de los datos relativos a la iluminación, pero también permite la introducción automática de los mismos datos procedentes del modelo luminotécnico que se crea en CYPELUX.

Se inicia con el programa CYPELUX.

- Ejecute el programa CYPELUX.
- Pulse el icono **Ejemplos** y seleccione **Offices**.
- En la esquina superior derecha, pulse Actualizar.
- Pulse **Selección de proyecto** y seleccione el proyecto *Offices Practical example*.

			ι	Jpdate BIM model					×
Project selection	Link: BIMserver.center Project: Offices - Practical example								
Select the	files you wa	int to	include						
Import	Туре		Application/Program	Project	Descriptio	n	Date	Changes	;
•	Initiator	\sim	IFC Builder	Offices Architectural Model.ifc			2021/10/21 07:21:42	New	
New elem	ents in the o	currer culatio	nt BIM model on model the new BIM r						
Modified e	elements in	the c	urrent BIM model						
Updati Updati	Update calculation model elements that have been modified in the BIM model Update the calculation model elements even if they have been modified Recover deleted items from the calculation model								
							~		
	Geographic location and reference system								
<u>A</u> ccept	Accept								

• En la esquina superior derecha, pulse **Compartir**. El programa le preguntará si desea actualizar los resultados antes de compartir la información. Pulse **No**.

File to be exported in IFC format	×
Generate the application results and upload them as a contribution to the project located on Bimserver.center.	
Name	
Offices - Practical example CYPELUX	
Description	
CYPELUX	\$
Additional files	
☑ Quantities	
🗹 Design annex	
✓ Reports	
DXF/DWG drawings	
Accept	ancel

La información con los datos luminotécnicos, posicionamiento de las luminarias y listados fue exportada al proyecto BIM *"Offices – Practical example"* ubicado en la plataforma BIMserver.center.

³ Creación del modelo de cargas térmicas

3.1 Creación de archivo

Se inicia el programa CYPETHERM LOADS.

- Ejecute el programa **EYPETHERM LOADS**.
- Pulse sobre **Archivo/Nuevo**. En la ventana que se abre, introduzca el nombre para la obra.

New job	×
Job name	
D:\CYPE Ingenieros\Examples\CYPETHERM LOADS\	Browse
File name Offices - Practical example	.hva
Description	
Accent	Cancel
Acceh	Cancer

4 Vinculación al proyecto BIM

Se abre una nueva ventana desde la que se le permitirá vincularse a un proyecto BIM presente en la plataforma BIMserver.center o crear uno nuevo.

- Pulse Seleccionar proyecto.
- Seleccione el proyecto "Offices Practical example" anteriormente creado y pulse Aceptar.

Se mostrará la ventana de configuración de importación de la plantilla BIM.

		Import of BIM models		_ x			
Project selection	Link: BIM: Project: Offic Main (initiator): Offic	erver.center ces - Practical example ces Architectural Model.ifc					
Select the	files you want to includ	e					
Import	Application/Program CYPELUX	Project Offices - Practical example CYPELUX	Description CYPELUX	Date 2021/10/21 09:20:58			
Edges / Sh	ading generation			^			
⊻ Impor ✓ Genera Locati ✓ Use	t edges ate the shadow descript on data Northern hem e the location of the BIM	ion in external elements iisphere v I model, if it is defined.		() () ()			
<	C Geographic location and reference system						
<u>A</u> ccept]			Cancel			

La opción **Directorio para búsqueda de tipologías** permite al usuario indicar la ubicación de su Biblioteca, que habrá ido elaborando con el tiempo.

Si los elementos constructivos definidos en el modelo BIM tienen la misma referencia de los de la biblioteca, quedarán automáticamente definidos. Si no existe la referencia en la biblioteca, el elemento debe ser definido por el usuario, pudiendo incluso exportarlo a su biblioteca para que éste sea parte de ella y pueda ser usado en futuras obras. Todos los elementos importados se pueden editar.

En este ejemplo, no se especificará la dirección donde se encuentra la biblioteca, ya que se pretende mostrar la creación manual de todos los elementos. Sin embargo, en el desarrollo del ejemplo se enseña cómo ir creando esta biblioteca de usuario.

Mantenga las opciones por defecto de acuerdo con la figura anterior y pulse Aceptar.

4.1 Información del edificio

La información del edificio (zonas, recintos, elementos constructivos) ha sido importada y puede verse en forma de árbol a la izquierda y también en una vista 3D bajo este árbol.

En el árbol algunos elementos presentan una señal con el signo de exclamación **I**. Significa que hay parámetros que deben definirse por el usuario. Si en el proceso de importación se hubiese indicado la ruta de la biblioteca de usuario y en ella hubiesen estado estos tipos de elementos, no hubieran aparecido estas exclamaciones, tal y como se ha mencionado anteriormente.

5 Definición de los recintos

Pulse **Recintos**. Aparecen los tipos de recinto del edificio.

	Reference
1	Office
2	Lift
3	Risers
4	WC
5	Comidor
6	Meeting room
7	Dining
8	Hall
9	Stairs
10	Technical room

5.1 Office

- Haga doble clic o pulse *P* **Editar**, con el tipo de recinto *Office* seleccionado.
- Active la opción Ventilación.
- Pulse sobre
 seleccione las opciones Office Buildings y Office space.

Minimum ventilation Rates in Breathing Zone						
Correctional Facilities	Import	Overview	Flow per person ((1/s)/person)			
Educational Facilities		Breakrooms	4			
Food and Beverage Service		Main entry lobies	6			
○ General		Occupiable storage rooms for dry materials	18			
Hotels, Motels, Resorts, Dormitories	✓	Office space	9			
Office Buildings		Reception areas	4			
		Telephone/data entry	3			
Public Assembly Spaces						
○ Retail						
Sports and Entertainment						
Source: ANSI/ASHRAE Standard 62.1-2013						
Cancel						

• Active la opción **Perfil de uso** del apartado *Ventilación*.

- Pulse **Perfiles diarios disponibles a** para crear un perfil determinado.
- Pulse + Añadir un nuevo elemento a la lista.
- Coloque "Daily ventilation" en la Referencia.
- Coloque el cursor y pulse consecutivamente para crear un perfil de acuerdo con la figura siguiente, entre las 20 horas y 6 horas la ventilación se encuentra al 10%, en el resto del período se encuentra al 100%.

_ 🖿 🗶 🛄 🖼 (🐔 📥 🌦 👯	
Reference	
1 Daily ventilation	
Accept	Cancel

- En la columna *Tipo*, presione sobre **Porcentaje constante** y seleccione **Perfil diario**, que en este caso corresponde al perfil de ventilación. Lo anterior es de aplicación en todos los meses, que además pueden seleccionarse a la vez.
- Pulse en 差 **Exportar** para importar posteriormente otros recintos y otras obras.
- Escriba el nombre del Fichero.

	Schedule				×
Reference Annu	ual Ventilation				æ
Month	Туре	Value			4
🔽 January	Daily profile	Daily ventila	tion	_	
February	Export the elemen	ıt to a file	×		
March	Work directory				
🔽 April	C:\CYPE Ingenieros\Libra	iry			
🔽 May					
✓ June					
July	Printial ventilation				
August			.matcype		
September	Accept	[Cancel		
Cctober	Daily profile	Daily ventila	ation		
Vovember	Daily profile	Daily ventila	tion		
December	Daily profile	Daily ventila	tion		
Accept				C	ancel

- Volviendo a la ventana *Recinto*, active la opción **Ganancias internas de calor** y, después, **Ocupación**.
- Pulse sobre Ocupación, seleccione la opción Office Buildings y Office space.

- Mantenga los datos restantes por defecto.
- Active la opción ⁽¹⁾ **Perfil de uso**, relativa a la Ocupación.
- Pulse **+ Añadir** para incluir un nuevo elemento a la lista, y escriba un nombre en la *Referencia*.
- Sitúe el cursor y pulse consecutivamente para crear un perfil de acuerdo con la siguiente figura.

En la columna *Tipo*, pulse sobre **Porcentaje constante** y seleccione *Perfil diario*. Lo anterior es de aplicación en todos los meses.

	Schedule						
Reference Ann	Reference Annual occupation						
Month	Туре	Value		4			
January	Daily profile	Daily occupation					
February	Constant percentage 👻	100.00 %					
March	Constant percentage Daily profile	100.00 %					
🔽 April	Constant percentage	100.00 %					
V May	Constant percentage	100.00 %					
V June	Constant percentage	100.00 %					
July	Constant percentage	100.00 %					
August	Constant percentage	100.00 %					
September	Constant percentage	100.00 %					
Cctober	Constant percentage	100.00 %					
Vovember	Constant percentage	100.00 %					
December	Constant percentage	100.00 %					
Accept			С	ancel			

- Pulse 差 **Exportar** para importar posteriormente en otros recintos u otras obras.
- Escriba el nombre de Fichero y pulse **Aceptar** dos veces.

Export the element to a file	×
Work directory	
C:\CYPE Ingenieros\Library	
File	
Annual occupation	
	.matcype
Accept	Cancel

- Volviendo a la ventana *Recinto*, active la opción **Equipamiento interno**.
- Pulse sobre < desde *Equipamiento interno* y seleccione la opción **Medium**.

Recommen	ded load factors for	various types of offices		×
Load density of offi	се		Medium	•
Source: Jeffrey D.Spitler. Lo	ad Calculation Applicati	ons Manual. ASHRAE. ISBN 97	78-1-933742-72	-4 (2010)
Accept			[Cancel
	🔽 Internal equipmen	t		
	Sensible heat gain	10.80 W/m² 🔻		
	Radiant fraction	0.20		
	Latent heat gain	0.00 W/m² 🔻		
	Schedule			

- Active la opción **Perfil de uso**, relativa al *Equipamiento interno*.
- Pulse **Perfiles diarios disponibles** para crear un perfil.
- Pulse + **Añadir** para incluir un nuevo elemento a la lista y escriba un nombre en la *Referencia*.
- Coloque el cursor y pulse consecutivamente para crear un perfil de acuerdo con la figura siguiente, entre las 18 horas y 7 horas, la iluminación y el equipo se encuentra a 10%; entre las 7 horas y 8 horas y 17 horas y 18 horas, la iluminación y el equipo se encuentra a 50%; y entre las 8 horas y 17 horas se encuentra al 100%.

• En la columna **Tipo**, pulse sobre **Porcentaje constante** y seleccione **Perfil diario**. Lo anterior es de aplicación en todos los meses.

	Sched	ule		×
Reference				æ
Month	Туре	Value		4
🔽 January	Daily profile	Daily illumination and equipment		
February	Daily profile	Daily illumination and equipment		
March	Daily profile	Daily illumination and equipment		
🔽 April	Daily profile	Daily illumination and equipment		
May	Daily profile	Daily illumination and equipment		
💟 June	Daily profile	Daily illumination and equipment		
🔽 July	Daily profile	Daily illumination and equipment		
🔽 August	Daily profile	Daily illumination and equipment		
September	Daily profile	Daily illumination and equipment		
October	Daily profile	Daily illumination and equipment		
November	Daily profile	Daily illumination and equipment		
December	Daily profile	Daily illumination and equipment		
Accept			С	ancel

- Pulse 🟴 **Exportar** para importar posteriormente en otras obras.
- Coloque el nombre del Fichero "Annual illumination and equipment".

Export the element to a file	×
Work directory	
C:\CYPE Ingenieros\Library	
File	
Annual illumination and equipment	
	.matcype
Accept	Cancel

- Volviendo a la ventana *Recinto*, active la opción **lluminación**.
- Pulse sobre
 Iluminación, seleccione las opciones Office y Downlight compact fluorescent luminaire.

☑ Lightin Sensible h Radiant fr Space fra	g action stion	0.00 W V 0.60 0.50		
Lightin	ng power densitie	5		×
Building area type Luminaire category	Dor	Office wnlight compact fluorescer	it luminaire	•
Source: Jeffrey D.Spitler. Load Calculation ANSI/ASHRAE/IES Standard S	on Applications Manu 90.1-2013	al. ASHRAE. ISBN 978-1-	933742-72-4	(2010)

- Active la opción **Perfil de uso**.
- Como este perfil es igual al perfil definido anteriormente para el equipo interno, pulse
 Importar.

• Seleccione el perfil de *Equipamiento interno* y pulse **Aceptar**.

Import ×	
Work directory	
C:\CYPE Ingenieros\Library	
File	
Annual illumination and equipment	
.matcype	
Accept Cancel	
Space (Type 1)	×
Reference Office	4 9
Space classification Occupied	÷
Calculation conditions Heated and cooled	
Cooling Heating	
Design indoor temperature 24.0 °C Design indoor temperature 21.0 °C	
Design relative humidity 50.00 % Design relative humidity 30.00 %	
Ventilation/Infiltration	
Ventilation 9 (//s)/person V 🗭 🗆 Infiltration	
Heat recovery	
V People 20.0 m/person V V V People 10.00 W/c2 -	
Sensible heat gain 70.00 W/person Sensible near gain 10.00 W/m V	
Latent heat rain 45.00 W/person Latent heat gain 0.00 W/m ²	
Schedule	
V Lighting	
Sensible heat gain 8.80 W/m² -	
Radiant fraction 0.97	
Space fraction 0.18	

A continuación, se desea exportar a la biblioteca del usuario el tipo de recinto. Esto permitirá, en este ejemplo, importar sus características a otros tipos de recintos. Por otro lado, permite que en futuras obras no se tenga que definir nuevamente los datos.

• Pulse 🏴 **Exportar**, coloque en el nombre *'Office''* y pulse **Aceptar**.

5.2 Meeting room

Como este tipo de recinto posee las mismas características que el tipo *Offices*, se procede a importar de la biblioteca el tipo *Offices* y, posteriormente, cambiar el nombre a *"Meeting room"*.

- Seleccione el recinto *Meeting room* y pulse *C* Editar.
- Pulse 🐖 Importar, seleccione Offices y pulse Aceptar.
- Cambie la *Referencia* a *Meeting room* y pulse **Aceptar**.
- La Densidad de ocupación será mayor, así que ponga 5m²/persona.
- Pulse 差 **Exportar** este nuevo tipo de recinto para su uso en futuros proyectos.

5.3 Corridor

- Haga doble clic (o Pulse 🧖 **Editar**) para el tipo de recinto *Corridor*.
- Active la opción Ventilación.
- Pulse sobre < y seleccione las opciones Office Buildings y Main entry lobbies.

Minimum ventilation Rates in Breathing Zone						
O Correctional Facilities	Importar	Descrição	Caudal por pessoa ((1/s)/pessoa)			
O Educational Facilities		Breakrooms	4			
○ Food and Beverage Service	✓	Main entry lobies	6			
◯ General		Occupiable storage rooms for dry materials	18			
Hotels, Motels, Resorts, Dormitories Office Publicance		Office space	9			
		Reception areas	4			
	Telephone/data entry		3			
ORetail						
O Sports and Entertainment						
Source: ANSI/ASHRAE Standard 62.1-2013						
Aceitar						

• Active la opción **Perfil de uso** del apartado *Ventilación*.

- Pulse Fulse Importar y seleccione el perfil de *Ventilación* de la biblioteca. Presione **Aceptar**.
- Volviendo a la ventana *Recinto*, active la opción **Infiltración**, escriba "19 l/s".

Ventilation/Infiltration				
Ventilation	6 (1/s)/person 🔻		19	I/s •
Heat recovery		Only with nil ventilation	n	
Schedule	ē			

• Active la opción Ganancias internas de calor/Ocupación.

Schedule

- Pulse sobre , seleccione las opciones Office Buildings y Main entry lobbies haga clic en Aceptar.
- Pulse sobre en las *Ganancias de calor*, seleccione la opción Moderately active office work (offices, hotels, apartments).

F	Representative st	ates of activi	ty			×	
Degree of activity	Moder	ately active offic	e work (office	s, hotels	, apartments)	~	
Percentage of men, women and children Adjusted Male/Female heat gain Percentage of women 50.00 %							
Percentage of children 50.00 % Source: Jeffrey D.Spitler. Load Calculation Applications Manual. ASHRAE. ISBN 978-1-933742-72-4 (2010)							
Aceitar	People	10.0 m	²/person 💌		Ca	riceiar	
	Sensible heat gain Radiant fraction Latent heat gain	75.0 0.5 55.0	0 W/person 8 0 W/person				

- Active la opción **Perfil de uso** para la *Ocupación*.
- Pulse **Importar** y seleccione el perfil de *Ocupación* de la biblioteca.
- Volviendo a la ventana *Recintos*, active la opción **Equipamiento interno**.
- Pulse sobre 🗲 desde el *Equipamiento interno*, seleccione la opción **Light**.

Internal equipment	
Sensible heat gain	5.40 W/m ² -
Radiant fraction	0.20
Latent heat gain	0.00 W/m ² -
Schedule	

- Active la opción **Perfil de uso** para el *Equipamiento interno*.
- Pulse 🐖 Importar y seleccione el perfil de *Equipamiento interno* de la biblioteca.
- Volviendo a la ventana del *Recinto*, active la opción **lluminación**.
- Pulse sobre de *lluminación*, seleccione la opción Office y Downlight compact fluorescent luminaire.

✓ Lighting		
Sensible heat gain	8.80 W/m² 🔻	
Radiant fraction	0.97	
Space fraction	0.18	
Schedule		

• Activa la opción **Perfil de uso** para la *lluminación*.

• Pulse 📕 Importar y seleccione el perfil de *lluminación* de la biblioteca.

Space (Type 5)	×
Reference Corridor	
Space classification Occupied	
Calculation conditions Heated and cooled	
Cooling Heating	
Design indoor temperature 24.0 °C Design indoor temperature 21.0 °C	
Design relative humidity 50.00 % Design relative humidity 30.00 %	
Ventilation/Infiltration	
Ventilation 6 (I/s)/person - (I/s)/person -	
Heat recovery	
✓ Schedule	
✓ Internal heat gains	
✓ People 10.0 m²/person ✓ Internal equipment	
Sensible heat gain 75.00 W/person Sensible heat gain 5.40 W/m² ▼	
Radiant fraction 0.58 🗬 Radiant fraction 0.20 🗲	
Latent heat gain 55.00 W/person Latent heat gain 0.00 W/m ² ▼	
Schedule	
Lighting Miscellaneous loads	
Sensible heat gain 8.80 W/m² 🔻	
Radiant fraction 0.97	
Space fraction 0.18	
Accept	Cancel

- A continuación, se desea exportar a la biblioteca del usuario el tipo de recinto *Corridor*. Esto permitirá, en este ejemplo, importar sus características a otros tipos de recintos. Por otro lado, permite que en futuras obras no se tenga que definir nuevamente los datos.
- Pulse 🟴 **Exportar**, coloque en el nombre *Corridor* y pulse **Aceptar**.

5.4 Hall

Como posee las mismas características del tipo de recinto *Corridor*, se pretende importar de la biblioteca el tipo *Corridor* y posteriormente cambiar el nombre.

- Haga doble clic o seleccione el tipo de recinto *Hall* y pulse **C** Editar.
- Pulse 🗧 Importar, seleccione *Corridor* y pulse Aceptar.
- Cambie la referencia a *Hall* y pulse **Aceptar**.

5.5 Risers

- Seleccione la clasificación del recinto como *No habitable*.
- Coloque los datos de acuerdo con la siguiente figura.

Space (Type 3)	×
Reference Risers	ę
Space classification Not occupied	*
Losses reduction factor 'b'	
Calculated	
© Custom	
Airtightness	
Completely airtight	
Without ventilation openings	
Small ventilation openings	
Permanent ventilation openings	
C Large or numerous ventilation openings	
© Custom	
Not airtight due to some localised open joints or permanent ventilation openings $(3\slashh)$	
Accept	ancel

5.6 Stairs

• Haga lo mismo que con *Risers*.

5.7 Lift

• Haga lo mismo que con *Risers*.

5.8 WC

• Haga lo mismo que con *Risers*.

5.9 Dining

Como posee las mismas características del tipo de recinto *Corridor*, se pretende importar de la biblioteca el tipo *Corridor* y posteriormente cambiar el nombre.

- Seleccione el tipo de recinto de *Dining* y pulse **C** Editar.
- Activa la opción Ventilación.
- Pulse sobre
 seleccione las opciones Food and Beverage Service y Restaurant dining rooms.

Minim	um ventilat	ion Rates in Breathing Zone	□ ×
O Correctional Facilities	Importar	Descrição	Caudal por pessoa ((1/s)/pessoa)
O Educational Facilities	•	Restaurant dining rooms	5
Food and Beverage Service		Cafeteria./fast-food dining	5
◯ General		Bar, cocktail lounges	5
O Hotels, Motels, Resorts, Dormitories		Kitchen (cooking)	7
Office Buildings			
O Miscellaneous spaces			
O Public Assembly Spaces			
◯ Retail			
O Sports and Entertainment			
Source: ANSI/ASHRAE Standard 62.1-2013			
Aceitar			Cancelar

- Active la opción Perfil de uso de la Ventilación.
- Pulse Fulse Fulse Pulse Fulse Pulse Fulse Pulse Fulse Fuls
- Volviendo a la ventana *Recinto*, active la opción **Ganancias internas de calor**.
- Active la opción **Ocupación**.

- Pulse sobre de Ocupación, seleccione las opciones Food and Beverage Service y Restaurant dining rooms.
- Pulse sobre las **Ganancias de calor** en la *Ocupación*, seleccione la opción **Sedentary work (restaurant)**.

Representative states of activ	vity		×		
Degree of activity Sedentary work (rest	aurant)] ~		
Percentage of men, women and children	Adjusted Male/Female	heat gain 🚿	-		
Percentage of women		50.0	0 %	People	1.4 m²/person 🔻 🗲
Percentage of children		50.0	0 %	Sensible heat gain	80.00 W/person
Source:				Radiant fraction	0.58
Jeffrey D.Spitler. Load Calculation Applications Manual.	ASHRAE. ISBN 978-1-9	33742-72-4 (2010)	Latent heat gain	80.00 W/person
Aceitar		Can	celar	Schedule	

- Active la opción **Perfil de uso** para la Ocupación.
- Pulse Filmportar y seleccione el perfil de Ocupación de la biblioteca. Presione
 Aceptar dos veces.
- Volviendo a la ventana del *Recinto*, active la opción **Equipamiento interno**.
- Pulse sobre < de *Equipo interno*, seleccione la opción **Light**.

Internal equipment	
Sensible heat gain	5.40 W/m ² -
Radiant fraction	0.20
Latent heat gain	0.00 W/m² 🔻
Schedule	ð

- Active la opción **Perfil de uso** para el *Equipamiento interno*.
- Pulse **Finance interno** de la biblioteca. Presione **Aceptar** dos veces.
- Volviendo a la ventana del *Recinto*, active la opción **lluminación**.
- Pulse sobre de *lluminαción*, seleccione las opciones Dining: Cafeteria/fast food y Downlight compact fluorescent luminaire.

Lighting power der	sities 🗌	×			
Building area type Luminaire category	Dining: Cafeteria/fast fo Downlight compact fluorescent luminaire	~ bod	✓ Lighting		
Source: Jeffrey D.Spitler. Load Calculation Applications ANSI/ASHRAE/IES Standard 90.1-2013	Manual. ASHRAE. ISBN 978-1-933742-72-	4 (2010)	Sensible heat gain Radiant fraction Space fraction	10.90 W/m	2 • 0.97 • 0.18
Aceitar	C	ancelar	Schedule		Þ

- Activa la opción **Perfil de uso** para la *lluminación*.
- Pulse Fulse Pulse Puls

Space (Type 7)	×
Reference Dining	-
Space classification Occupied	
Calculation conditions Heated and cooled	
Cooling Heating	
Design indoor temperature 24.0 °C Design indoor temperature 21.0 °C	
Design relative humidity 50.00 % Design relative humidity 30.00 %	
Ventilation/Infiltration	
Ventilation 5 (1/s)/person V (
Heat recovery	
Schedule	
✓ Internal heat gains	1
People 1.4 m²/person V Internal equipment	
Sensible heat gain 80.00 W/person Sensible heat gain 5.40 W/m² 🔻	
Radiant fraction 0.58 🙀 Radiant fraction 0.20 🗲	
Latent heat gain 80.00 W/person Latent heat gain 0.00 W/m ² V	
✓ Schedule	
Ughting	
Sensible heat gain 8.60 W/m² ▼	
Radiant fraction 0.58	
Space fraction 0.69	
Schedule	
Accept	Cancel

5.10 Technical room

- Seleccione el tipo de recinto *Technical room* y pulse **C** Editar.
- Seleccione la clasificación del recinto como *No habitable*.
- Coloque los datos de acuerdo con la siguiente figura.

Space (Type 10)	×
Reference Technical room	-
Space classification Not occupied	*
Losses reduction factor 'b'	
Calculated	
© Custom	
Air tightness	
Completely airtight	
Without ventilation openings	
Small ventilation openings	
Permanent ventilation openings	
I Large or numerous ventilation openings	
Custom	
Not airtight due to numerous open joints, or large or numerous permanent ventilation openings (10/h)	
Accept	Cancel

6 Definición de elementos constructivos

6.1 Fachadas

Pulse sobre Fachadas.

6.1.1 Brick wall 13

• Haga doble clic sobre ella o, con el tipo *Brick wall 13* seleccionado, pulse 🖉 Editar.

		Façade (Type 1)			×	<
Reference Brick wall 13						-
Oetailed input O Simplifie	ed input					9
🕒 🗾 🗋 🖨 🖊						
L. Thickness (cm) Conducti	ivity (W∕(m·K))	Thermal resistance ((m²·K)	/W) Density (kg/m³)	Specific heat capacity (J/(kg·K))	1
Punctual thermal bridges (per m ²)	Linear thermal	bridge				
X (W/K)	Туре		(W/(m·K))	Separation (cm)		
Absorptance				0.60		
Accept					Cance	el

- Pulse + **Añadir** para añadir una capa de material a la solución constructiva. El programa permite introducir los datos relativos al material constituyente de la capa constructiva, así como importar de una de las *Biblioteca*s disponibles.
- Pulse sobre 🥯 ISO 10456.
- Pulse sobre **Revocos y enlucidos** y seleccione *Cemento, arena*.

- Coloque en *Espesor* el valor de 0,8 cm, y pulse sobre el cuadro azul para cambiar el color y elija el gris.
- Si desea exportar este material a la biblioteca, presione **F Exportar**, escriba el nombre del Fichero *"Mortero"*.

Materials described in	the EN ISO 10456 code	×
Asphalt Bitumen Concrete Roor coverings Gases Glass Water Metals Plastics, solid Rubber Sealant materials, weather stripping and thermal breaks Gypsum Plasters and renders Solis Stone Tiles (roofing) Tiles (other) Timber Wood-based panels	 Gypsum insulating plaster Gypsum plastering (density 1000) Gypsum plastering (density 1300) Gypsum, sand Lime, sand Cement, sand 	

• Pulse + Añadir y después sobre • UNE-EN ISO 10456. Pulse en Materiales sellantes, burletes y roturas térmicas y seleccione *Espuma de poliuretano*. Coloque el *Espesor* de 6 cm.

Materials described in the EN ISO 10456 code			
Asphalt	Silica del (dessicant)		
Bitumen			
Concrete	 Silicone, pure 		
Floor coverings	 Silicone, filed 		
Gases	Silicone foam		
Glass	Urethane/polyurethane (thermal break)		
Water			
Metals	Polyvinylchloride (PVC) flexible, with 40% softener		
Plastics, solid	Elastomeric foam, flexible (density 60)		
Rubber	Elastomeric foam, flexible (density 80)		
Sealant materials, weather stripping and thermal breaks			
Gypsum	Polyuretnane (PU) toam		
Plasters and renders	Polyethylene foam		
Soils			
Stone			
Tiles (roofing)			
Tiles (other)			
Timber			
Wood-based panels			

Layer			×
Reference Polyurethane (PU) foam			ere HE
Type of layer	Solid	•	CIE
Thickness	6.00	cm	9
Density	70.00	kg/m³	LNE
Conductivity	0.05	W/(m·K)	
Specific heat capacity	1500.00	J/(kg·K)	<u></u>
Water vapour diffusion resistance factor	60.0		
Colour Mesh Asp	ect of the	material	8 4
			۵
			٧
			۲
			0
			4
			<u></u>
			-
			-
Accept		Ca	ancel

Con la capa Mortero seleccionada, pulse Copiar para añadir una nueva capa igual.
 Seleccione la nueva capa de mortero y pulse Copiar. Coloque un Espesor de 0.5 cm.

Reference Brick wall 13					
Detailed input Simplified input					
🖻 💋 🗋 🖨 🖊					
Layers	Thickness (cm)	Conductivity (W/(m·K))	Thermal resistance ((m²-K)/W)	Density (kg/m³)	Specific heat capacity (J/(kg·K))
Mortar	0.80	1.00	0.008	1800.00	1000.00
Polyurethane (PU) foam	6.00	0.05	1.200	70.00	1500.00
Mortar	0.50	1.00	0.005	1800.00	1000.00

• Pulse + Añadir y luego sobre Materiales de la biblioteca de HULC. Rellene con los datos de la siguiente figura.

	Materiales de la biblioteca de HULC	×
CTE	Fábricas de bloque cerámico de arcilla aligerada	•
HE	BC con mortero convencional	•
	BC con mortero convencional espesor 240 mm	▼
	Thickness	24.0 cm
	Minimum thickness	24 cm
	Maximum thickness	24 cm
	Unit weight	1090 kg/m³
	Conductivity	0.421 W/mK
	Specific heat capacity	1000 J/Kg K
	Water vapour diffusion resistance factor	10
	Fuente: CEC2009	
Accept		Cancel

Pulse + Añadir para añadir una nueva capa de material a la solución constructiva.
 Pulse de nuevo sobre
 UNE-EN ISO 10456. Pulse sobre Yeso y seleccione Yeso (densidad 1200). Pulse Aceptar. Seleccione el color blanco.

	Materials	described in the E	N ISO 10456 code		×	
	Asphalt		imeum (density COO)			
	Bitumen		iypsum (density 600)			
	Concrete	© G	iypsum (density 900)			
Flo	or coverings	0	iypsum (density 1200)			
	Gases	0.0	ivosum (density 1500)			
	Glass			-		
	Water	© G	ypsum plasterboard (density /0)	J)		
	Metals	© G	ypsum plasterboard (density 90)	D)		
PI	astics solid					
	Bubber					
Sealant materials, weat	ther stripping and	thermal breaks				
	Gunsum	anomar broaks				
Plaste	are and renders					
	Soils					
	Stone					
	les (roofing)					
	files (other)					
· · · · · · · · · · · · · · · · · · ·	Timber					
Wood	d-based nanels					
	a basea paricis					
Accept					Cancel	
Accept					Cancel	
Accept		Façade (Type	1)		Cancel	×
Accept Reference Brick wall 13		Façade (Type	1)		Cancel	×
Accept Reference Brick wall 13 Detailed input Simplified input		Façade (Type	1)		Cancel	×
Accept Reference Brick wall 13 O Detailed input Simplified input		Façade (Type	1)		Cancel	× • •
Accept Reference Brick wall 13 O Detailed input Simplified input Image: Construction of the second		Façade (Type	1)		Cancel	× • •
Accept Reference Brick wall 13 O Detailed input Simplified input Image: Simplified input Image: Simplified input	Thickness (cm)	Façade (Type	1) Themal resistance ((m² K)/W)	Density (kg/m²)	Cancel	× • • •
Accept Reference Brick wall 13 O Detailed input Simplified input Image: Simplified input Image: Simplified input Image: Simplified input Image: Simplified input Mortar Image: Simplified input	Thickness (cm) 0.80	Façade (Type Conductivity (W/(m·K) 1.00	1) Themal resistance ((m² K)/W) 0.008	Density (kg/m²) 1800.00	Cancel	×
Accept Reference Brick wall 13 O Detailed input Simplified input Image: Simplified input Image: Simplified input Image: Simplified input Image: Simplified input Mortar Polyurethane (PU) foam	Thickness (cm) 0.80 6.00	Façade (Type Conductivity (W/(m·K)) 1.00 0.05	1) Themal resistance ((m²-K)/W) 0.008 1.200	Density (kg/m²) 1800.00 70.00	Cancel	×
Accept Reference Brick wall 13 Detailed input Simplified input Layers Mortar Polyurethane (PU) foam Mortar	Thickness (cm) 0.80 6.00 0.50	Façade (Type Conductivity (W/(m-K) 1.00 0.05 1.00	1) Themal resistance ((m²-K)/W) 0.008 1.200 0.005	Density (kg/m²) 1800.00 70.00 1800.00	Cancel	× • •
Accept Reference Brick wall 13 Detailed input Simplified input Layers Mortar Polyurethane (PU) foam Mortar BC con mortero convencional espesor 240 mm	Thickness (cm) 0.80 6.00 0.50 24.00	Façade (Type Conductivity (W/(m-K) 1.00 0.05 1.00 0.42	1) Themal resistance ((m²-K)/W) 0.008 1.200 0.005 0.570	Density (kg/m²) 1800.00 70.00 1800.00 1090.00	Cancel	× • •
Accept Reference Brick wall 13	Thickness (cm) 0.80 6.00 0.50 24.00 10.00	Façade (Type Conductivity (W/(m·K)) 1.00 0.05 1.00 0.42 0.43	1) Themal resistance ((m²-K)/W) 0.008 1.200 0.005 0.570 0.233	Density (kg/m³) 1800.00 70.00 1800.00 1090.00 1200.00	Cancel	×
Accept Reference Brick wall 13	Thickness (cm) 0.80 6.00 0.50 24.00 10.00	Façade (Type Conductivity (W/(m·K)) 1.00 0.05 1.00 0.42 0.43	1) Themal resistance ((m²-K)/W) 0.008 1.200 0.005 0.570 0.233	Density (kg/m³) 1800.00 70.00 1800.00 1090.00 1200.00	Cancel	×
Accept Reference Brick wall 13 Detailed input Simplified input Accept Layers Mortar Polyurethane (PU) foam Mortar BC con motero convencional espesor 240 mm Gypsum (density 1200)	Thickness (cm) 0.80 6.00 0.50 24.00 10.00	Façade (Type Conductivity (W/(m·K)) 1.00 0.05 1.00 0.42 0.43	1) Themal resistance ((m²-K)/W) 0.008 1.200 0.005 0.570 0.233	Density (kg/m²) 1800.00 70.00 1800.00 1090.00 1200.00	Cancel	×
Accept Reference Brick wall 13 Detailed input Simplified input Layers Mortar Polyurethane (PU) foam Mortar BC con motero convencional espesor 240 mm [Gypsum (density 1200)	Thickness (cm) 0.80 6.00 0.50 24.00 10.00	Façade (Type Conductivity (W/(m·K)) 1.00 0.05 1.00 0.42 0.43	1) Themal resistance ((m ² K)/W) 0.008 1.200 0.005 0.570 0.233	Density (kg/m²) 1800.00 70.00 1800.00 1090.00 1200.00	Cancel	×
Accept Reference Brick wall 13 Detailed input Simplified input Simplified input Detailed input Simplified input Accept Mortar Polyurethane (PU) foam Mortar BC con mortero convencional espesor 240 mm Gypsum (density 1200) Punctual thermal bridges (per m ²) Linear thermal Bridges (per m ²)	Thickness (cm) 0.80 6.00 0.50 24.00 10.00 bridge	Façade (Type Conductivity (W/(m·k)) 1.00 0.05 1.00 0.42 0.43	1) Themal resistance ((m ² K)/W) 0.008 1.200 0.005 0.570 0.233	Density (kg/m ³) 1800.00 70.00 1800.00 1090.00 1200.00	Cancel	
Accept Reference Brick wall 13 Detailed input Simplified input Simplified input Polyurethane (PU) foam Mortar Con mortero convencional espesor 240 mm Gypsum (density 1200) Punctual thermal bridges (per m ²) Linear thermal I Image: The mail of the mail bridges (per m²) Image: The mail of the mail t	Thickness (cm) 0.80 6.00 0.50 24.00 10.00 bridge	Façade (Type Conductivity (W/(m·k)) 1.00 0.05 1.00 0.42 0.43	1) Themal resistance ((m ² -K)/W) 0.008 1.200 0.005 0.570 0.233	Density (kg/m³) 1800.00 70.00 1800.00 1090.00 1200.00	Cancel	
Accept Reference Brick wall 13 Detailed input Simplified input Image: Simplified input	Thickness (cm) 0.80 6.00 0.50 24.00 10.00 bridge	Façade (Type Conductivity (W/(m·k)) 1.00 0.05 1.00 0.42 0.43	1) Themal resistance ((m²-K)/W) 0.008 1.200 0.005 0.570 0.233 (W/(m-K))	Density (kg/m³) 1800.00 70.00 1800.00 1090.00 1200.00	Cancel	
Accept Reference Brick wall 13 Detailed input Simplified input Image: Simplified input	Thickness (cm) 0.80 6.00 0.50 24.00 10.00 bridge	Façade (Type Conductivity (W/(m·k)) 1.00 0.05 1.00 0.42 0.43	1) Thermal resistance ((m ² K)/W) 0.008 1.200 0.005 0.570 0.233 (W/(m-K))	Density (kg/m³) 1800.00 70.00 1800.00 1090.00 1200.00	Cancel	
Accept Reference Brick wall 13 Detailed input Simplified input Simplified input Image: Simplified input Simplified input Image: Simplified input<td>Thickness (cm) 0.80 6.00 0.50 24.00 10.00 bridge</td><td>Façade (Type Conductivity (W/(m·k)) 1.00 0.05 1.00 0.42 0.43</td><td>1) Thermal resistance ((m²-K)/W) 0.008 1.200 0.005 0.0570 0.233 (W/(m-K))</td><td>Density (kg/m²) 1800.00 70.00 1800.00 1090.00 1200.00</td><td>Cancel</td><td>× • • •</td>	Thickness (cm) 0.80 6.00 0.50 24.00 10.00 bridge	Façade (Type Conductivity (W/(m·k)) 1.00 0.05 1.00 0.42 0.43	1) Thermal resistance ((m²-K)/W) 0.008 1.200 0.005 0.0570 0.233 (W/(m-K))	Density (kg/m²) 1800.00 70.00 1800.00 1090.00 1200.00	Cancel	× • • •
Accept Reference Brick wall 13 Detailed input Simplified input Image: Simplified input	Thickness (cm) 0.80 6.00 0.50 24.00 10.00 bridge	Façade (Type Conductivity (W/(m-K)) 1.00 0.05 1.00 0.42 0.43	1) Thermal resistance ((m²-K)/W) 0.008 1.200 0.005 0.0570 0.233 (W/(m-K))	Density (kg/m³) 1800.00 70.00 1800.00 1090.00 1200.00	Cancel	× • • •
Accept Reference Brick wall 13 • Detailed input • Simplified input • • • • • • •	Thickness (cm) 0.80 6.00 0.50 24.00 10.00 bridge	Façade (Type Conductivity (W/(m-k)) 1.00 0.05 1.00 0.42 0.43	1) Thermal resistance ((m²-K)/W) 0.008 1.200 0.005 0.0570 0.233 (W/(m·K))	Density (kg/m²) 1800.00 70.00 1800.00 1090.00 1200.00	Cancel	

• Como ya se ha mencionado anteriormente, a través de los iconos **Exportar** e **Importar**, puede exportar e importar a la biblioteca del usuario para su uso en futuras obras.

6.1.2 Brick wall 17

Haga doble clic en la pared **Brick 17** (o selecciónela y pulse **Editar**).

• Pulse + **Añadir** y luego sobre **Materiales de la biblioteca de HULC H**. Seleccione *Fábrica de Ladrillo cerámico, Ladrillo perforado LP*.

	Materiales de la biblioteca de HULC		×
CTE	Fábricas de ladrillo		-
	Fábrica de ladrillo cerámico		•
HE	Ladrillo perforado LP		-
	1/2 pie LP métrico o catalán 60 mm< G < 80 mm		-
	Thickness	12.3 cm	n
	Minimum thickness	11.5 cm	n
	Maximum thickness	13 cm	n
	Unit weight	1020 kg	j∕m³
	Conductivity	0.583 W	l∕mK
	Specific heat capacity	1000 J/	'Kg K
	Water vapour diffusion resistance factor	10	
	Fuente: CEC2009		
Accept		Can	ncel

• Pulse + Añadir y luego sobre Materiales de la biblioteca de HULC . Seleccione *Poliestireno Expandido (EPS)* y ponga 2.0 de *Espesor*.

	Materiales de la biblioteca de HULC	×
CTE	Aislantes	•
HE	Poliestireno Expandido (EPS)	-
	EPS Poliestireno Expandido [0.029 W/[mK]]	•
	Thickness	2.0 cm
	Minimum thickness	0.1 cm
	Maximum thickness	200 cm
	Unit weight	30 kg/m³
	Conductivity	0.029 W/mK
	Specific heat capacity	1000 J/Kg K
	Water vapour diffusion resistance factor	20
	Fuente: CEC2009	
Accept		Cancel

• Pulse Copiar para copiar la capa de ladrillo introducida en primer lugar.

6.2 Tabiquería

Se prosigue ahora con la definición de la Tabiquería.

6.2.1 Simple partition

- Haga doble clic sobre Simple partition o pulse Editar.
- Pulse + Añadir y luego sobre VINE-EN ISO 10456. Pulse sobre Yeso y seleccione
 Yeso (densidad 1200). Seleccione el color blanco.
- Pulse + Añadir para añadir una capa de material a la solución constructiva. Pulse
 Air cavity, teclee 2.5 cm y pulse Aceptar.
- Con la capa *Placa de yeso laminado* seleccionada, pulse **Copiar** para añadir una nueva capa igual.

Partition wall (Type 1)					_ >
Reference Simple partitio	n				
Detailed input	Simplified input				
🗄 💋 🗋 🖨	+				
Layers	Thickness (cm)	Conductivity (W/(m·K))	Thermal resistance ((m²-K)/W)	Density (kg/m³)	Specific heat capacity (J/(kg
Gypsum (density 900)	10.00	0.30	0.333	900.00	1000.00
Air cavity	2.50	0.14	0.180	1.00	1008.00
Gypsum (density 900)	10.00	0.30	0.333	900.00	1000.00
•					
Punctual thermal bridges (perm ²) Linearthe	mal bridge			
🗄 🗾 🗋	🔄 💽 🛃				
X (W/K)	Туре		(W/(m·K))		Separation (cm)
Absorptance 0.60 (
Accept					Canc

🔹 Pulse 差 **Exportar** para importar posteriormente otros recintos y otras obras.

6.2.2 Isolated partition

- Pulse **Finder**, seleccione *Simple partition* y pulse **Aceptar**. Cámbiele el nombre y llámela *"Isolated partition"*.
- Pulse + Añadir y luego sobre **WINE-EN ISO 10456**. Pulse sobre Sealant materials y seleccione *Polyurethane (PU)*. Pulse Aceptar. Seleccione el color amarillo.

Materials described in	the EN ISO 10456 code	×
Asphalt	 Silica gel (dessicant) 	
Bitumen		
Concrete	O silicone, pure	
Floor coverings	 Silicone, filed 	
Gases	Silicone foam	
Glass	Urethane/polyurethane (thermal break)	
Water		
Metals	Polyvinyichionde (PVC) flexible, with 40% softener	
Plastics, solid	 Elastomeric foam, flexible (density 60) 	
Rubber	 Elastomeric foam, flexible (density 80) 	
Sealant materials, weather stripping and thermal breaks	Polyurethane (PLI) foam	
Gypsum		
Plasters and renders	Polyethylene foam	
Soils		
Stone		
Tiles (roofing)		
Tiles (other)		
Timber		
Wood-based panels		
Accept	C	ancel

• Muévalo con la flecha ᅌ hasta situarlo en segundo lugar.

		Partition wall (Туре 2)			×
Reference Isolated partition	1					-
 ● Detailed input ● Sin ● ▲ ▲ ▲<	nplified input					4
Layers	Thickness (cm)	Conductivity (W/(m·K))	Thermal resistance ((m²-K)/W)	Density (kg/m³)	Specific heat capacity (J	1
Gypsum (density 900)	10.00	0.30	0.333	900.00	1000.00	
Polyurethane (PU) foam	10.00	0.05	2.000	70.00	1500.00	
Air cavity	2.50	0.14	0.180	1.00	1008.00	
Gypsum (density 900)	10.00	0.30	0.333	900.00	1000.00	
Punctual thermal bridges (pe	III III Punctual themal bridges (per m?) Linear themal bridge					
т 🖌 🛄 Х (W/K)	Type		(W/(m·K))	Se	eparation (cm)	
Absorptance Accept					0.60	Cancel

• Pulse 手 **Exportar** para importar posteriormente otros recintos y otras obras.

6.3 Suelos en contacto con el terreno

• Pulse sobre suelos en contacto con el terreno.

6.3.1 Screed

Haga doble clic en **Screed**.

• Pulse + Añadir y luego sobre los materiales • UNE-EN ISO 10456. Pulse sobre Hormigón y seleccione *Armado (con un 1% de acero).* Teclee *"20 cm"*.

Materials described in t	the EN ISO 10456 code	×
Asphalt	Medium density (density 1800)	
Bitumen	Medium denethy (denethy 2000)	
Concrete	Medium density (density 2000)	
Floor coverings	Medium density (density 2200)	
Gases	High density	
Glass	Reinforced (with 1% of steel)	
Water		
Metals	 Heinforced (with 2% of steel) 	
Plastics, solid		
Rubber		
Sealant materials, weather stripping and thermal breaks		
Gypsum		
Plasters and renders		
Soils		
Stone		
Tiles (roofing)		
Tiles (other)		
Timber		
Wood-based panels		
Accept		Cancel

Pulse + Añadir y luego sobre los materiales VINE-EN ISO 10456. Pulse sobre Plásticos sólidos y seleccione Polietileno de baja densidad. *Película de polietileno y Espesor* de 0.2 cm. Pulse Aceptar.

Materials described in t	the EN ISO 10456 code	×
Asphalt	C Acrylic	
Bitumen	Polyophonetee	
Concrete	Polycalbonates	
Floor coverings	Polytetrafluoroethylene (PTFE)	
Gases	Polyvinylchloride (PVC)	
Glass	Polymethylmethacrylate (PMMA)	
Water	Paupastata	
Metals	Oroyacelale	
Plastics, solid	Polyamide (nylon)	
Rubber	Polyamide 6.6 with 25% glass fibre	
Sealant materials, weather stripping and thermal breaks	Polyethylene /polythene, bith density	
Gypsum	- Tolyeutylene/polyurene, nich densky	
Plasters and renders	Polyethylene/polythene, low density	
Soils	Polystyrene	
Stone		
Tiles (roofing)		
Tiles (other)	Polypropylene with 25% glass fibre	
Timber	Polyurethane (PU)	
Wood-based panels	Epoxy resin	
	Phenolic resin	
	Polyester resin	

Pulse + Añadir y luego sobre los materiales HULC . Pulse en Aislantes y seleccione Poliestireno extruido (XPS). Activa la opción Con aislamiento periférico. Seleccione Horizontal en el Tipo de aislamiento. Coloque 1.35m2K/W en Resistencia térmica. Coloque 1.0 m en Anchura o profundidad.

		Slab-o	on-ground floor (Type	1)			×
Reference Screed							æ
Oetailed input Simplifie	d input						P
🕒 💋 🗋 🖨 🦊 👘							
Layers		Thickness (cm)	Conductivity (W/(m·K))	Thermal resistance ((m²-K)/W)	Density (kg/m³)	Specific heat capacity (J/(kg·K))	
Concrete. Reinforced (with 1% of	steel)	20.00	2.30	0.087	2300.00	1000.00	
Película de polietileno		0.20	0.33	0.006	920.00	2200.00	
XPS Expandido con dióxido de ca	arbono CO2 [0.034 W/[mK]]	2.00	0.03	0.588	37.50	1000.00	
Durantural the second besidence (a second	Linear the small be idea						
X (W/K)	Туре			(W/(m·K)) Separation (cm)		Separation (cm)	
Туре						Slab-on-ground floor 🔻	
With edge insulation							
Type of insulation						Horizontal 💌	
Thermal resistance					1.350 (m ² -K)/W		
Thickness						5.00 cm	
Thickness or depth						1.00 m	
Thermal conductivity						2.00 W/(m·K)	
Accept						Canc	;el

6.4 Forjados entre pisos

Pulse sobre Forjados entre pisos.

6.4.1 Floor slab

• Pulse + Añadir y luego sobre los materiales SISO 10456. Pulse sobre *Revestimientos para suelos y Linóleo* y asigne un *Espesor* de *0.2 cm*.

Materials described in t	the EN ISO 10456 code	×
Asphalt	Rubber	
Bitumen		
Concrete		
Floor coverings	 Underlay, cellular rubber or plastic 	
Gases	 Underlay, felt 	
Glass	O Underlay, wool	
Water		
Metals	O Underlay, cork	
Plastics, solid	Tiles, cork	
Rubber	Carpet/textile flooring	
Sealant materials, weather stripping and thermal breaks		
Gypsum		
Plasters and renders		
Soils		
Stone		
Tiles (roofing)		
Tiles (other)		
Timber		
Wood-based panels		
Accept		Cancel

Pulse + Añadir y luego sobre los materiales S EN ISO 10456. Pulse sobre Hormigón, media densidad 1800, asigne un *Espesor* de 8.0 cm, cambie el Color y *Trama* de acuerdo con las figuras siguientes.

• Presione 差 **Exportar**, teclee el nombre del *Fichero "Hormigón en masa*".

Materials described in	the EN ISO 10456 code	×
Asphalt Bitumen Concrete Floor coverings Gases Glass Water Water Metals Plastics, solid Rubber Sealant materials, weather stripping and themal breaks Gypsum Plasters and renders Soils Stone Tiles (roofing) Tiles (other) Timber Wood-based panels	 Medium density (density 1800) Medium density (density 2000) Medium density (density 2200) High density Reinforced (with 1% of steel) Reinforced (with 2% of steel) 	

- Pulse + Añadir y luego sobre los materiales **ISO 10456**. Pulse sobre Hormigones, Armado (con un 1% de acero). Asigne un *Espesor* de *20 cm*.
- Pulse + Añadir y luego Cámara de aire, seleccione la opción Cámara de aire Sin ventilar, cambie la *Disposición* a *Vertical* y asigne un *Espesor* de *30 cm*.
- Pulse + Añadir y luego sobre los materiales SISO 10456. Pulse sobre Yeso, Placa de yeso laminado (densidad 700). Asigne un *Espesor* de 1.5 cm.
- Pulse 🟴 **Exportar** para importar posteriormente otros recintos y otras obras.

	Internal flo	oor slab (Type 1)			×
Reference Floor slab					æ
Detailed input Simplified input Image: Simplified input Image: Simplified input	t				ş
Layers	Thickness (cm)	Conductivity (W/(m·K))	Thermal resistance ((m²-K)/W)	Density (kg/m³)	
Linoleum	0.20	0.17	0.012	1200.00	
Hormigón en masa	8.00	1.15	0.070	1800.00	
Concrete. Reinforced (with 1% of steel)	20.00	2.30	0.087	2300.00	
Air cavity	30.00	1.67	0.180	1.00	
Gypsum plasterboard (density 700)	1.50	0.21	0.071	700.00	
<				۱.	
Punctual thermal bridges (per m?) Linea	r thermal bridge				
X (W/K) Type	е	(W/(m·K)) Separat	tion (cm)	
Absorptance				0.60	
Accept				[Cancel

6.4.2 External floor slab

- Pulse **Floor slab** y pulse **Aceptar**. Cámbiele el nombre y llámela *"External floor slab"*.
- Elimine las capas de yeso y cámara de aire.

6.5 Cubiertas

Pulse sobre **Cubiertas**.

- Pulse + Añadir y luego sobre VINE-EN ISO 10456. Pulse sobre Azulejos y baldosas y Cerámica. Teclee "1 cm" en Espesor.
- Pulse 🕂 Añadir e 👎 Importar, seleccione Mortero.
- Pulse + Añadir y luego sobre VINE-EN ISO 10456. Pulse sobre Plásticos sólidos y Resina de poliéster, Espesor "0,10 cm", Color verde.
- Pulse + Añadir y luego sobre VINE-EN ISO 10456. Pulse sobre Materiales sellantes, burletes roturas térmicas y Espuma de poliuretano, Espesor 8 cm, Color amarillo.
- Con la capa *Resina de poliéster* seleccionada, pulse Copiar para añadir una nueva capa igual.
- Pulse + Añadir y luego sobre VINE-EN ISO 10456. Pulse sobre Asfalto, Espesor 0,40 cm, Color negro.
- Pulse + Añadir y luego en Cámara de aire, seleccione la opción Cámara de aire sin ventilar, cambie la Disposición a Vertical y asigne un Espesor de 30 cm.
- Pulse + Añadir y luego sobre los materiales VINE-EN ISO 10456. Pulse sobre
 Yeso, Placa de yeso laminado (densidad 700). Asigne un Espesor de 1.5 cm.

Detailed input O Simplified input Image: Simplified input Image: Simplified input	put				
Layers	Thickness (cm)	Conductivity (W/(m·K))	Thermal resistance ((m²-K)/W)	Density (kg/m³)	Specific heat capacity (J/(kg·K))
Ceramic/porcelain	10.00	1.30	0.077	2300.00	840.00
Mortar	0.80	1.00	0.008	1800.00	1000.00
Polyester resin	0.10	0.19	0.005	1400.00	1200.00
Polyurethane (PU) foam	8.00	0.05	1.600	70.00	1500.00
Polyester resin	0.10	0.19	0.005	1400.00	1200.00
Asphalt	0.40	0.70	0.006	2100.00	1000.00
Air cavity	20.00	0.89	0.225	1.00	1008.00
Gypsum plasterboard (density 700)	1.50	0.21	0.071	700.00	1000.00
Punctual thermal bridges (per m ²) Lir	ear thermal bridge		(M//m.K))		Separation (cm)
			(y y)		

6.6 Puertas

Pulse sobre **Puertas**.

- Hay dos tipos de puertas a definir.
- Haga doble clic o pulse **Editar** con la puerta seleccionada, y escriba *"2.030"* en el *Coeficiente de transmisión de calor*, en cada una de ellas.

		Door (Type 1)				×
Reference	Internal door					æ
Heat transfe	er coefficient		2.030	W/(m²-K)		F
Absorptance	•		0.60		(
Accept					Ca	ancel

6.7 Huecos acristalados

Pulse sobre Huecos acristalados.

 Haga doble clic o pulse Editar en cada una de ellas, y escriba "2" en el Coeficiente de transmisión de calor, en cada una de ellas.

Glazed opening (Type 1)	×
Reference Window 2	
Glazed fraction Dpaque fraction External shading Internal shading	\$
Heat transmission coefficient V / W/(m ² K)	
Center-of-glazing solar heat gain coefficient, SHGC	
Normal incidence 0.70	
L Accent	
Accept	Cancer

6.8 Puentes térmicos lineales

Pulse sobre **Puentes térmicos lineales**.

Se visualizan todas las *Arista*s detectadas, las cuales presentan un valor por defecto de *0.5* en el *Psi*, faltando por parte del usuario confirmar o alterar tal valor.

Ŧ	Z	1 🗅	👌 🖉 🖉 🦊 🚱				
			Reference	Psi	Value	In use	-
1	1	H.	LFi [E]Screed-[B]Brick wall 13(90)	0.50	Not defined		
2	2	L.	LFi [E]Screed-[B]Brick wall 17(90)	0.50	Not defined		
3	3	L.	LFi [M]External floor slab-[B]Brick wall	0.50	Not defined		
4	4	2	LFi [F]Floor slab-[C]Isolated partition(90)	0.50	Not defined		Ξ
5	5	2	LFi [F]Floor slab-[C]Simple partition(90)	0.50	Not defined		
6	5	Г	LFs [G]Concrete roof 19-[B]Brick wall	0.50	Not defined		
7	7	2	LFs [F]Floor slab-[C]Isolated partition(90)	0.50	Not defined		

La definición de un puente térmico lineal puede ser manual o automática. La definición manual se realiza mediante la edición del puente térmico lineal y el relleno del correspondiente coeficiente de transmisión térmica, existen bibliotecas predefinidas para la importación de los valores.

_	Linear thermal bridge (Type 1)		×
		ĩ	g
Reference	LFi [E]Screed-[B]Brick wall 13(90)	CTE DB-HE	<u> </u>
Description	*	4 ISO 14683	*
		🖕 ISO 10211	
Psi	0.50 W/(m·K)	年 RT Existant	
Value	Not defined	4 RT 2012	
Accept		Ca	ancel

La configuración automática se describe a continuación.

• En la barra de herramientas de cinta (más ancha), pulse en el icono Aristas.

	Edges processing	×
	Linear themal bridge analysis to calculate the corresponding transmittance, depending on the characteristics of the adopted construction solutions. This analysis will be carried out taking into account the specifications that are applicable depending or code that has been selected to calculate the themal transmittance in linear themal bridges. The import of building information models (BIM) focuses on the geometric description of the building; the technical information is introduced using specific software. Therefore, to detect linear thermal bridges, the program must carry out a two-step process. For the first step, 'Edges' are imported as purely geometric entities, obtained from the intersection of various construction elements. In the second step 'Edges processing' linear thermal bridges are obtained from edges, taking into account the building description from a thermal analysis point of view (zones, space description, etc.) Configuration	n the leir the
Accept		Cancel

 Pulse Configuración y deje los datos de acuerdo con la siguiente figura. Pulse Aceptar.

Configuration X
Code ISO 14683
EN ISO 14683. Thermal bridges in building construction. Linear thermal transmittance. Simplified methods and default values.
The values suggested in the code are used as reference for the linear thermal transmittance coefficient for the different thermal bridges, taking into account the configuration for the constructive elements that make them up.
Alignment of the frame of the opening with respect to the façade Internal face 💌
The insulation of the façade reaches the frame of the opening
Front of the slab with insulation
Numerical analysis of linear themal bridges (EN ISO 10211)
Module developed as part of the 'Development of a software tool for the integration of the numerical analysis of themal bridges in the analysis of building energy demand' investigation project, financed by the 'Centro para el Desarrollo Tecnológico Industrial (CDTI)', and co-financed by the 'European Regional Development Fund (ERDF)' and carried out in collaboration with the 'Grupo de Ingeniería Energética' of the 'Departamento de Sistemas Industriales' of Miguel Hernández University of Elche (Alicante).
Manual definition of the linear thermal transmittance coefficient
Accept Cancel

Aparece la ventana *Procesamiento de arista*s con el *Psi* calculado.

			Edges processing			×
	Reference		Description	Psi		-
1.	LFi [E]Screed [B]Brick wall 13(90)		GF1. Screed in contact with the soil.	Thermal bridges in building construct 0.800 Linear thermal transmittance. Simplifi methods and default values.	tion. ed	ш
2.	LFi [E]Screed [B]Brick wall 17(90)		GF2. Screed in contact with the soil.	Thermal bridges in building construct 0.750 Linear thermal transmittance. Simplifi methods and default values.	tion. ed	
3.	LFi [E]Screed [B]Brick wall 17(90)		GF2. Screed in contact with the soil.	Thermal bridges in building construct 0.750 Linear thermal transmittance. Simplifi methods and default values.	tion. ed	
4.	LFi [M]External floor slab [B]Brick wall 13(90)	L	Raised floor slab This type of thermal bridge is not taken into account by the code. In this case, a default value is assumed for the linear transmission.	0.500 Default value.		
5.	LFs [G]Concrete roof 19 [B]Brick wall 13(90)		Roof This type of thermal bridge is not taken into account by the code. In this case, a default value is assumed for the linear transmission.	0.500 Default value.		
6.	TFs [G]Concrete roof 19 [G]Concrete roof 19(180) [B]Brick wall 13(90)		Roof This type of thermal bridge is not taken into account by the code. In this case, a default value is assumed for the linear transmission.	0.500 Default value.		
_	TFmi [F]Floor slab		Intermediate floor slab	0 500 Default value		-
				K ∢ Page 1	•	M
A	ccept				Can	icel

• Tras aceptar, aparece la ventana *Resultados de la actualización*.

Update process results X					
Edges	796				
Useful	222				
Deleted	574				
Recovered	-				
Modified	222				
Accept					

Dentro del árbol, en *Proyecto*, están los recintos agrupados. Dentro de cada recinto se encuentran sus elementos constructivos y puentes térmicos lineales.

Al seleccionar un recinto, es posible definir la *Potencia instalada* de *lluminación* para ese recinto específicamente. Cuando el programa realice el cálculo de cargas, será ese valor el que utilice, ignorando el valor introducido en el tipo de recinto.

Este valor puede ser introducido manualmente o bien mediante el proceso de importación de un modelo BIM de iluminación.

Kiii Building	Space
	Reference Dining room
	Type 7: Diving
Façades	7. Dining V
Partition walls	Area 50.5 m ²
	Volume 171.90 m ³
Le Slab-on-ground floors	
Hoor slabs	Lighting
	Installed power
End floor 1	
E for 2	
E floor 3	
Indexed	

7 Definición del modelo de cálculo

Pulse sobre la pestaña Cargas térmicas.

7.1 Datos del emplazamiento

 Pulse Datos del emplazamiento. Aparecerá la ventana de configuración de los Datos de emplazamiento y las Condiciones de diseño para la calefacción y la refrigeración.

			Location dat	а			×
Location							Š
Latitude	38.2	28 ° Foreground solar i	reflectance			0.20	
Longitude	-0.5	55 ° Time zone				1.0	V S
Elevation	31.0	00 m 🛛 🗹 Daylight saving	g time (DST)	Fir	st month April 👻	Last month October 👻	
Heating design conditions							j 🗖
Dry-bulb temperature	4.8 °C	Relative humi	dity 80.0 %		Ground temperature	3.0 °C	
Cooling design conditions							Í
Monthly cooling load calculations performance	Design dry-bulb temperature (°C)	Mean coincident wet-bulb temperature (°C)	Daily dry-bulb temperature range (°C)	Daily wet-bulb temperature range (°C)	Clear sky optical depth for beam irradiance	Clear sky optical depth for diffuse irradiance	
January	19.8	12.5	9.4	6.3	0.334	2.395	
February	21.1	13.2	9.6	6.7	0.366	2.215	
March	23.2	14.3	9.9	6.5	0.411	2.038	
April	24.0	15.1	9.9	6.0	0.443	1.954	
May	26.4	17.5	9.3	5.4	0.496	1.834	
June	30.6	20.0	9.2	5.4	0.537	1.757	
July	32.2	21.7	8.9	5.8	0.559	1.717	
August	32.9	22.1	8.9	5.6	0.533	1.788	
September	31.0	21.1	9.2	5.9	0.484	1.901	
October	27.2	19.3	9.3	5.6	0.415	2.094	
November	23.7	16.1	8.9	5.8	0.366	2.266	
December	20.0	13.5	9.1	5.9	0.339	2.367	
Accept							Cancel

Puede cambiar los datos manualmente o importar datos grabados en la biblioteca. En este ejemplo se utilizará la base de datos ASHRAE.

• Pulse sobre el botón 🍐 **ASHRAE Weather Data Viewer** y seleccione los datos que se indican en la figura.

	Import	>	<
A	shrae		
	WMO region	4 - NORTH AND CENTRAL AMERICA 🗸]
R	Country	United States ~]
	State/Province	Georgia ~]
	Station name	ATLANTA HARTSFIELD-JACKSON]
	Annual percentile	value (Heating) 99% ~	1
	Annual percentile	value (Cooling)	
	Annual tempe	ratures 1% ~]
Weather Data Viewer 6.0.	Monthly temp	eratures 2% ~]
2017 ASHRAE, www.ashrae.org	Latitude (°)	33.64 N	1
Used with permission.	Longitude (°)	84.43 W	1
	Altitude	313.00 m	ı
The data are provided "as is" without v as to the quality and performance of ti any damages, including without limita consequential damages arising out of	varranty of any kind, he data is with you. I ation any lost profits, the use or inability t	either expressed or implied. The entire risk n no event will ASHRAE be liable to you for lost savings, or other incidental or o use the data.	
Accept		Cance	1

• Pulse **Aceptar** para importar los datos seleccionados.

			Location da	ta			
ocation ATLANTA HAR	ISFIELD-JACKSON						
Latitude	33.6	4 • Foreground solar	r reflectance			0.2	0
Longitude	-84.4	13 ° Time zone				-5.	0
Elevation	313.0	10 m 🗹 Daylight savin	ıg time (DST)	Fir	st month April ~	Last month October	~
leating design conditions							
Dry-bulb temperature	-3.00 °C	Relative hum	nidity 80.0	%	Ground temperature	7.76 °C	
coling design conditions							
Monthly cooling load calculations performance	Design dry-bulb temperature (°C)	Mean coincident wet-bulb temperature (°C)	Daily dry-bulb temperature range (°C)	Daily wet-bulb temperature range (°C)	Clear sky optical depth for beam irradiance	Clear sky optical depth for diffuse irradiance	^
January	19.00	14.80	9.60	7.50	0.31	2.538	
February	20.60	14.90	10.10	7.40	0.315	2.521	
March	25.00	15.90	10.70	6.10	0.347	2.453	
April	27.80	18.30	11.00	5.30	0.386	2.324	
May	30.60	21.00	10.10	4.20	0.44	2.213	
	22.20	22 70	9.50	3.70	0.473	2.168	
June	55.50	22.70					
June July	34.50	23.70	9.30	3.40	0.515	2.066	
June July August	34.50 34.30	23.70	9.30	3.40 3.40	0.515	2.066	
June July August September	34.50 34.30 31.70	23.70 23.70 21.90	9.30 9.10 9.20	3.40 3.40 3.80	0.515 0.515 0.417	2.066 2.052 2.312	

7.2 Opciones de cálculo

• Pulse ahora sobre ⁽²⁾ Opciones de cálculo.

Calculation options	×
Heating loads calculation	
Analysis method	
Safety factor	
Orientation safety factor	
Cooling loads calculation	
Annual 👻	
Latent cooling factor	
Sensible cooling factor	
Save as default settings	
Accept Default settings Car	ncel

En este diálogo podrá modificar las opciones de cálculo para el cálculo de las cargas térmicas. En el cálculo de las cargas térmicas de calefacción es posible seleccionar el método de cálculo la norma EN 12831 o ASHRAE. En el cálculo de las cargas térmicas de refrigeración el programa utiliza el método ASHRAE.

• Pulse **Aceptar** para mantener las opciones predeterminadas. Se pretende definir las zonas y los correspondientes recintos.

7.3 Hipótesis y Zonas térmicas

• Pulse 🋍 **Hipótesis**, mantenga la *Referencia* y pulse **Aceptar**.

Edit	×
Hypothesis	
Reference Hypothesis 1	
Accept	Cancel

En este ejemplo se creará una zona para la planta baja y otra para el resto de oficinas.

• Pulse î **Zona**, y coloque *"Zona Planta Baja"* en *Referencia.*

	Edit	×
Zone		
Reference	Zone Ground Floor	
Space selection	D	
Accept		Cancel

Para seleccionar los recintos que se incluirán en esta zona, pulse Selección de recintos y seleccione sólo los que serán climatizados en planta baja.

 Se pretende crear una nueva zona. En el árbol, pulse en Hipótesis 1. Pulse 2 Zona. Introduzca la Referencia (por ejemplo: Zone Offices).

	Edit	×
Zone		
Reference	Zone Offices	
Space selection	Þ	
Accept		Cancel

• Pulse 🖻 **Selección de recintos** y marque todas las oficinas y las salas de reuniones.

Space selection		×
Project		
in a cound floor (Partially included in: Zone Ground Floor)		
Dining room (Included in: Zone Ground Floor)		
WC of (Not occupied)		
🖃 🗹 🗫 floor 1		
Griffice 2		
V 🐨 Meeting room		
- V 🐨 Office 3		
WC 1f (Not occupied)		
🗹 🖅 Office 4		
Corridor (Not occupied)		
🖃 📝 矜 floor 2		
- I I I I I I I I I I I I I I I I I I I		
🗹 🖅 Meeting room 2		
🗹 🖅 Office 7		
🖂 🖅 WC 2f (Not occupied)		
🗹 🖅 Office 6		
🗌 🖅 Corridor 2 (Not occupied)		
🚊 📝 🋷 floor 3		
🗹 🖅 Office 8		
🗹 🖅 Office 10		
🗌 🖅 WC 3f (Not occupied)		
🗹 🖅 Office 9		
Corridor 3 (Not occupied)		
🗄 🗆 🛷 unheated		
🗌 🖅 Lift (Not occupied)		
🖸 📨 Risers (Not occupied)		
🗌 🖅 Lift (Not occupied)		
🖸 📨 Risers (Not occupied)		
🗌 🖅 Lift (Not occupied)		
Risers (Not occupied)		
🗌 🖅 Lift (Not occupied)		
Risers (Not occupied)		
🗌 🖅 Stairs (Not occupied)		
🗌 🖅 Technical room (Not occupied)		
	_	
Accept	(Cancel

El modelo del edificio ha quedado completamente definido.

8 Cálculo y análisis de resultados

8.1 Actualizar resultados

Para realizar o actualizar el cálculo de los resultados, pulse sobre el botón **Actualizar resultados**. Después del cálculo podrá analizar los valores calculados.

En el árbol, pulse sobre la **Zona de planta baja** para consultar la *Evolución anual de la carga máxima simultánea de refrigeración*, por ejemplo.

Presionando sobre la lista de *Análisis de los resultados*, puede consultar otros datos, como la *Evolución horaria de la carga de refrigeración*.

Presionando sobre el recinto *Oficina 1* es posible consultar otros datos.

8.2 Listado de resultados

Para consultar el resultado del cálculo de las cargas térmicas, pulse sobre *Listado de cargas térmicas*. En el panel emergente podrá seleccionar el contenido del listado. Se puede seleccionar un resumen de los resultados, los recintos de cada zona que desea incluir en el listado, así como la posibilidad de incluir las *Gráficas*:

List of thermal loads		×
 Zone hypothesis Hipothesis 1 ✓ Thermal load summary report ✓ Zone Ground Floor ✓ Zone Offices 	Report	design aphs
Accept	(Cancel

Además, puede acceder a la lista completa de las cargas térmicas de las dos zonas, seleccionando la opción **Hipótesis 1** en el árbol y pulsando **Listado completo**. Si prefiere sólo una zona, pulse en la zona que desee y pulse **Listado completo**.

El programa incluye, para cada nivel del árbol, un listado donde se detalla la metodología utilizada en el cálculo implementado. Para visualizarlo, seleccione la opción **Descripción del cálculo** en el apartado *Análisis de los resultados*.

Presionando sobre el botón **Listados complementarios** de la barra de herramientas superior se pueden consultar los documentos *Descripción de materiales y elementos constructivos y Cálculo del factor de reducción*.

9 Actualización y exportación del modelo BIM

Cualquier cambio en el modelo BIM del edificio puede reflejarse en el modelo de cálculo mediante la función de actualización. Si el programa detecta que el modelo BIM ha sido modificado, el botón **Actualizar** alerta al usuario funcionando de forma intermitente, mostrando los iconos representados en la siguiente figura (20) (20).

En este caso, para proceder a la actualización deberá pulsar sobre 🮯 Actualizar.

		Update BIM model				×
Project selection	Link: BIM: Project: Offic Main (initiator): Offic	erver.center ces - Practical example ces Architectural Model.ifc				
Select the	files you want to includ	e				
Import	Application/Program	Project	Description	Date	Changes	;
•	CYPELUX	Offices - Practical example CYPELUX	CYPELUX	2021/10/21 09:20:58		
Edges / Sh	ading generation					^
🗹 Import	t edges				0	
Update	e the shading descriptio	n in the external elements			0	
Even if Locatio	f they have been modifi on data Northern hem the location of the BIM	ed isphere v I model, if it is defined.				
				Geographic location and refer	ence syste	m
Accept]				Cano	el

El programa indica, en la parte superior, si el proyecto ha sido modificado o no. Durante el proceso de actualización es posible parametrizar las acciones a realizar para elementos nuevos, modificados o eliminados. También pueden actualizarse las tipologías de soluciones constructivas, aristas y sombras a partir de la actualización del modelo BIM.

Si desea exportar los valores de las cargas térmicas a archivo en formato IFC, para que pueda importarse por ejemplo en el programa CYPETHERM HVAC, o en otro programa que trabaje en Open BIM, deberá seguir el siguiente procedimiento.

Pulse sobre el icono	8	Compartir.
----------------------	---	------------

.

Export in 'IFC' format	×
Using this option, a file is generated containing the thermal load results for each space in 'IFC' format, linked to the BIM model of the building.	
File name	
Offices Architectural Model CYPETHERM LOADS	
Attached description	
	*
	Ŧ
Accept	Cancel

De este modo se exporta al proyecto en cuestión en BIMserver.center, un archivo IFC con las cargas térmicas de cada recinto del edificio.

Si el proyecto se actualiza, se debe realizar una nueva exportación actualizando la información presente en el archivo IFC.

La información generada por el programa CYPETHERM LOADS puede ser utilizada por otros programas. Por ejemplo, los programas de diseño de instalaciones de climatización integrados en el flujo de trabajo Open BIM a través de la plataforma BIMserver.center son capaces de importar las cargas térmicas calculadas para el dimensionamiento de la instalación.