

Software para Arquitectura, Ingeniería y Construcción

CYPEFIRE Pressure Systems

Manual de uso

Cálculo de sistemas de presión diferencial según la normativa europea EN 12101-6

Índice

1	Со	nce	ptos básicos	3
	1.1	Re	sumen	3
	1.2	Ter	rminología y estructura del IFC	3
	1.3	Int	erfaz	4
	1.	3.1	Barra de herramientas principal	5
	1.	3.2	Planos de planta	5
	1.	3.3	Vistas 3D	5
2	Со	nfig	guración	6
	2.1	Pu	ertas	6
	2.2	Vei	ntanas	7
	2.3	Ele	mentos constructivos	7
	2.4	Aju	ıstes	8
3	Int	rod	lucción de un sistema de sobrepresión.	10
	3.1	Pes	staña – Recintos	12
	3.2	Pes	staña – Criterio de diferencia de presión	12
	3.3	Pes	staña – Criterio de flujo de aire	13
	3.4	Rej	jillas	14
4	Мо	odel	o de cálculo	15
	4.1	Cri	terio de diferencia de presión (Puertas cerrad	las) 16
	4.2	Cri	terio de diferencia de presión	17
	4.3	Cri	terio de flujo de aire	18
5	Re	sult	ados	19

1 Conceptos básicos

1.1 Resumen

CYPEFIRE Pressure Systems es una herramienta desarrollada para realizar la instalación de un sistema de sobrepresión de escaleras según la norma EN 12101-6.

La aplicación dispone las clases de Sistema A, B, C, D y E recogidas en dicha normativa para desarrollar los cálculos necesarios para cumplir con dicha sobrepresión.

La finalidad de la aplicación es calcular todas las fugas/escapes de aire que se producen en los elementos de un sistema de sobrepresión (Escalera, Vestíbulos de independencia y/o Ascensor) en cada una de las hipótesis necesarias. El sumatorio de todas estas fugas en cada hipótesis definirán los caudales necesarios para mantener la presurización de la escalera, vestíbulo y/o ascensor con respecto al resto del edificio.

1.2 Terminología y estructura del IFC

Esta sección del manual mostrará cómo iniciar un proyecto y comenzar a usar CYPEFIRE Pressure Systems.

Comience por descargar la última versión de CYPEFIRE Pressure Systems desde BIMserver.center (<u>https://bimserver.center/en/store/cypefire_pressure_systems</u>), para ello sólo hay que tener una cuenta de BIMserver.center.

El primer paso es abrir CYPEFIRE Pressure Systems.

A continuación, conéctese a **BIMserver.center** en el extremo derecho e inicie sesión si es necesario siguiendo los pasos indicados. Una vez que haya iniciado sesión ya puede comenzar a trabajar.

Para continuar trabajando en una obra previa, seleccione **Gestión archivos** y localice el proyecto deseado. De lo contrario, para iniciar un nuevo proyecto, seleccione **Nuevo...**, elija dónde se guardará el archivo y dele un nombre y una descripción al archivo. Después aparecerá una pantalla de BIMserver.center, aquí es donde se puede crear un nuevo proyecto BIM seleccionando **Crear nuevo proyecto** o conectar esta nueva obra con un proyecto existente en BIMserver.center; para ello haga clic en **Seleccionar proyecto**, aparecerá una lista con todos sus proyectos, seleccione el apropiado y haga clic en **Aceptar**.

El programa cargará el proyecto seleccionado y cualquier archivo asociado en el proyecto. A continuación, puede seleccionar los archivos que desea importar para la simulación además del modelo arquitectónico. Al hacer clic en **Aceptar**, se cargará la configuración seleccionada y se abrirá la interfaz principal del programa con su modelo cargado.

Fig. 1. Interfaz de CYPEFIRE Pressure Systems

1.3 Interfaz

En la interfaz de CYPEFIRE Pressure Systems se encuentran las 4 secciones principales en las que se divide: barra de herramientas principal (1), ventana de navegación por los planos de planta existentes (2), Vista 3D del modelo, en caso de existir (3) e interfaz 2D para la introducción de elementos (4). Cada sección está resaltada en las imágenes de abajo.

Fig. 2. Secciones de la interfaz

1.3.1 Barra de herramientas principal

	.	4 🥩														-		×
											A	و 😥	Q 🖪 🗟 🖓 🗖	S 📓 🚟 N	C	ъĢ	*	⊚∙ Ø+
÷				H	E,		Ø	\$	Ð							()	🧭	
Model	Spaces Assign spaces	Walls Assign walls	Doors Assign doors	Windows	Assign windows	Grille		Q	÷		Pressurizing system	Update results				Upda	te Expor	t Alejandro J.
Project			Elements					Edi	t	Γ <u>ν</u>	Calcula	tion			 3D Vie	w	BIM m	odel

Fig. 3. Opciones de la barra de herramientas

La barra de herramientas contiene las utilidades principales para controlar la configuración del sistema de sobrepresión de escaleras. Aquí se pueden editar las características de los muros, puertas y ventanas según la normativa, editar y realizar las mediciones sobre el plano y crear un sistema de presurización partiendo del modelo BIM.

El panel de selección se usa para modificar/introducir datos para el elemento seleccionado en el árbol del proyecto. Es posible editar elementos en la lista, agregar nuevos elementos, eliminar elementos o reordenar elementos usando las flechas azules.

1.3.2 Planos de planta

En la parte de los planos de planta se puede navegar por el modelo seleccionando la planta en la que se desea utilizar las herramientas de las que dispone el programa para introducir un sistema de presurización de escaleras.

1.3.3 Vistas 3D

En la ventana inferior izquierda de la aplicación se dispone una vista 3D del modelo BIM sobre el que se está trabajando. Aquí se visualiza el modelo en su estado actual. Es posible refrescar el modelo para actualizar cualquier cambio que se haya realizado, filtrar las capas, modificar la orientación y usar cortes para realizar secciones. Para navegar por la vista 3D, los controles son muy similares a otros programas CYPE. Para desplazar el modelo, mantenga presionada la rueda del ratón. Para rotar el modelo, mantenga presionado el botón izquierdo o derecho del ratón. Para hacer zoom, simplemente gire la rueda del ratón.

Fig. 4. Vista 3D del modelo

2 Configuración

A continuación se va a exponer cómo configurar los principales elementos que afectan al cálculo de un sistema de sobrepresión de escaleras.

2.1 Puertas

Las puertas en un sistema de sobrepresión suponen, normalmente, el mayor porcentaje de las pérdidas de caudal de aire producido en este tipo de instalaciones. Las fugas en las puertas pueden realizarse entre recintos presurizados (desde la escalera al vestíbulo de independencia o hacia el ascensor) o entre la caja de escaleras y las zonas de alojamiento.

Con la herramienta **Asignar puertas**, que se encuentra en la barra de herramientas principal de la aplicación se pueden configurar las puertas del modelo BIM, según la tipología asignada a éstas o sobre la interfaz del programa seleccionando cada una de ellas.

Según la normativa EN 12101-6 las puertas, según su área de fuga, pueden ser:

- Puerta de una hoja que abre hacia un espacio presurizado
- Puerta de una hoja que abre hacia fuera de un espacio presurizado
- Puertas de dos hojas
- Puerta de rellano de ascensor

Tipo de puerta	Área de fuga m ²
Puerta de una hoja, que abre hacia un espacio presurizado	0,01
Puerta de una hoja, que abre hacia fuera del espacio presurizado	0,02
Puerta de dos hojas	0,03
Puerta de rellano de ascensor	0,06

Tabla A.3 – Datos de fuga de aire a través de puertas

Fig. 5. Datos de fuga de aire a través de las puertas

2.2 Ventanas

Las fugas de caudal producidas a través de las ventanas son menores que las producidas por las puertas y, normalmente, estarán instaladas únicamente en las cajas de escaleras dando al exterior.

Al igual que las puertas, las ventanas siguen el mismo criterio para asignar sus propiedades. Según el código de sobrepresión de escaleras los tipos de ventanas según su fuga de caudal son:

- Oscilante sin burlete
- Oscilante con burlete
- Deslizante

Tipo de ventana	Área de resquicio m ² por m de longitud
Oscilante, sin burlete	$2,5 \times 10^{-4}$
Oscilante y con burlete	$3,6 \times 10^{-5}$
Deslizante	$1,0 \times 10^{-4}$

Tabla A.4 – Datos de la fuga de aire a través de las ventanas

Fig. 6. Datos de fuga de aire a través de las ventanas

2.3 Elementos constructivos

Por último, están las fugas de caudal producidas por los elementos constructivos, estas pérdidas se producen por los resquicios que existen en este tipo de elementos (forjados, tabiques y fachadas).

Estas fugas de caudal pueden parecer insignificantes por sus valores según la normativa, pero que en sistemas de sobrepresión de un volumen moderado pueden marcar gran diferencia entre tenerlas en cuenta o no.

Elemento de obra	Estanquidad de las paredes	Relación del área de fuga $A_{\rm LW}/A_{\rm Wall}$
Paredes exteriores del edificio (incluidos resquicios de	Estanca	$0,7 \times 10^{-4}$
la obra, y alrededor de ventanas y puertas)	Media	$0,21 \times 10^{-3}$
	Permeable	$0,42 \times 10^{-3}$
	Muy permeable	$0,13 \times 10^{-2}$
Paredes internas y de las escaleras (incluidos resquicios	Estanca	$0,14 \times 10^{-4}$
de la obra, pero no los resquicios alrededor de ventanas y puertas)	Media	$0,11 \times 10^{-3}$
	Permeable	$0,35 \times 10^{-3}$
Paredes del pozo del ascensor (incluidos los resquicios	Estanca	$0,18 \times 10^{-3}$
de construcción, pero no los resquicios alrededor de ventanas y puertas)	Media	$0,84 \times 10^{-3}$
	Permeable	$0,18 \times 10^{-2}$

Tabla A.5 – Datos de fugas de aire a través de paredes

Tabla A.6 – Datos de fuga de aire por suelos

Elemento de obra	Estanquidad del pavimento	Relación del área de fuga $A_{ m LF}\!/A_{ m Floor}$
Suelos (incluye rendijas en pavimento y en las entregas de suelo a muros)	Media	$0,52 imes 10^{-4}$

Fig. 7. Datos de fuga de aire a través de los elementos constructivos

2.4 Ajustes

Para realizar la asignación de las propiedades vistas en los apartados anteriores se dispone diferentes métodos.

Para comenzar, a la hora de iniciar un nuevo proyecto en CYPEFIRE Pressure Systems e importar un modelo BIM, aparecerá un panel (como el de la Fig. 8) sobre la interfaz de la aplicación. Sobre este panel, antes de iniciar el proyecto, se ha de realizar la asignación de cada elemento según sus características, así como indicar qué espacios del modelo son los representativos del sistema de presurización de escaleras (Escaleras, Vestíbulos de independencia y Ascensores).

		Selection of elements	□ ×
Spaces	Reference	Type of room	Drawing
🧭 Walls	Toilet Women	Does not intervene 🗸 🗸	Ground floor
// Doors	Toilet Men	Does not intervene 🗸 🗸	Ground floor
	Kitchen	Does not intervene \vee	Ground floor
Windows	Dining room	Does not intervene 🗸 🗸	Ground floor
		Stair Independent vestibule Elevator/Lift Does not intervene	
Cancel		< Previous Next >	Finish

Fig. 8. Configuración de los recintos importados desde el modelo BIM

Una vez iniciado el proyecto siempre existe la posibilidad de volver a editar este panel desde la barra de herramientas principal, como se ha visto anteriormente.

También se dispone de una herramienta en la que, seleccionando en cada caso el valor normativo que se desea aplicar, se podrá seleccionar sobre la interfaz del programa aquellos elementos sobre el cual se ha de usar estos valores normativos.

Esta herramienta puede resultar muy útil en el caso de aplicar el área de fuga de las puertas, que según su disposición en obra puede tener un valor diferente.

Fig. 9. Herramientas para asignar los valores normativos sobre la interfaz

Introducción de un sistema de sobrepresión

Una vez finalizada la revisión de todos los elementos importados desde el modelo BIM se puede comenzar con la introducción de un sistema de sobrepresión de escaleras.

Sobre la barra de herramientas se encuentra esta utilidad, en la Fig. 10 se muestra como luce este panel.

Para comenzar a trabajar se ha de introducir referencia y descripción del sistema, así como seleccionar la clase de sistema e identificar si el vestíbulo y el ascensor (en caso de existir) están o no presurizados.

Las clases de sistema definen los cálculos que se deben realizar, criterios a aplicar según la normativa, así como los valores que se han de utilizar para aplicar dichos criterios.

leference Class D System			
-			
Description	Class D System		
-			
Jiass			Class D 🗸
Height			
Pressurized firefighting lobby			
Pressurized lift			
naces Deserve d'éfense estimates Ati	0		
Jaces Pressure difference criterion All	tiow criterion		
+ ∠ ▲ ▼			
Space		lype of room	Drawing
RF Stairs		Stair	F6 - Sixth Floor
Lift shaft I		Elevator/Lift	Fb - Sixth Floor
Lift shaft 2		Elevator/Lift	Fb - Sixth Floor
F5 LOBBY		Independent vestibule	F5 - Fifth Floor
Fo Stairs		Stair	F5 - Fifth Floor
Lift shaft I		Elevator/Lift	F5 - Fifth Floor
Lift shaft 2		Elevator/Lift	F5 - Fifth Floor
F4 LODBY		Independent vestibule	F4 - Fourth Floor
F4 Stairs		Stair	F4 - Fourth Floor
Lift shaft I		Elevator/Lift	F4 - Fourth Floor
Lift shaft 2		Elevator/Lift	F4 - Fourth Floor
Lift shart I		Elevator/Lift	F3 - Third Floor
Lift shaft 2		Elevator/Lift	F3 - Third Floor
F3 Stairs		Stair	F3 - Third Floor
F3 Lobby		Independent Vestibule	F3 - Third Floor
F2 Juliis		Tielden en dent until tur	F2 - Second Floor
F2 LODBY		Elevator/Lift	F2 - Second Floor
Lift chaft 2		Elevator/Lift	E2 - Second Floor
E1 Staire		Stair	E1 - Eirst Floor
F1 Lobby		Independent vertibule	F1 - First Floor
Lift chaft 1		Elevator/Lift	F1 - First Floor
			er er ver
epresentation			
tair			
ndependent vestibule			
launtau/Life			
levator/Lift			

Fig. 10. Ventana de edición de un sistema de presurización

En la Tabla 1 se muestra un resumen de los parámetros de diseño de las clases de sistema según la normativa.

	Uso	Criterio de diferencia de presión con puertas cerradas	Criterio de diferencia de presión	Criterio de flujo de aire
Clase A	Se asume que el edificio no será evacuado, a menos que esté amenazado por el incendio.	\checkmark	×	v: 0,75 m/s
Clase B	Se usará un sistema de clase B para reducir al mínimo las posibilidades de contaminación por humo durante las operaciones de evacuación y extinción.	\checkmark	×	v: 2,0 m/s
Clase C	Se basa en el supuesto de que todos los ocupantes serán evacuados al mismo tiempo. Ej. Oficinas	\checkmark	\checkmark	v: 0,75 m/s
Clase D	Esta clase asume que los ocupantes del edificio puedan estar durmiendo, por lo que el tiempo será mayor. Ej. Hoteles	\checkmark	\checkmark	v: 0,75 m/s
Clase E	Este sistema se aplica en edificios donde la evacuación de los ocupantes se va a realizar de forma escalonada o por fases. Ej. Hospitales	\checkmark	\checkmark	v: 0,75 m/s
		P. Escalera: 50 Pa P. Ascensor: 50 Pa P. Vestíbulo: 45 Pa	Escalera: 10Pa	

Tabla 1. Tabla resumen con las principales características de cada clase de sistema

3.1 Pestaña – Recintos

La primera de las pestañas en la edición del sistema de sobrepresión de escaleras es la de edición de *Recintos*.

En esta pestaña se han de introducir todos los recintos que pertenezcan al sistema y que previamente hayan sido clasificados como:

- Escalera
- Vestíbulo de independencia
- Ascensor

3.2 Pestaña – Criterio de diferencia de presión

La segunda de las pestañas para la introducción de un *sistema de sobrepresión de escaleras* es la del *Criterio de diferencia de presión.*

Sobre esta pestaña se puede indicar qué puertas, de todos los recintos marcados en la pestaña anterior, se consideran abiertas a la hora de realizar el cálculo de este criterio. Según la diferencia de presión a ambos lados de la puerta abierta, dependiendo del tipo de sistema calculado, y de la superficie de la puerta abierta resultará un caudal de fugas que habrá que vencer para mantener la diferencia de presión en el interior de la caja de escaleras.

Stair						
ect, amongst the door that open up to	o the stair, those that are con	sidered open to check the pressure diffe	erence criterion is m			
		sidered open to encek the pressure and				
+ ∠ ▲ ▼						
Door	Space	Type of room	Drawing			
Interior door - wood (82.50 x 203.00) cr	m F4 Lobby	Independent vestibule	F4 - Fourth Floor			
		Chaile	CE Convert Elever			

Fig. 11. Pestaña - Criterio de diferencia de presión

3.3 Pestaña – Criterio de flujo de aire

Por último, se encuentra la pestaña *Criterio de flujo de aire* en la que, al igual que en la pestaña anterior, se deben marcar aquellas puertas consideradas abiertas para aplicar este cálculo.

Spaces Pressure difference	criterion Airflow criterion			
Stair				
Select, amongst the doors	that open up to the stair, th	ose that are considered ope	n to check the airflow crite	erion is met
• .Z • •				
Door	Space		Type of room	Drawing
Fire door 1 (80 x 200) cn	n GF Stairs		Stair	GF - Ground Floor
Select the door to be chec	ked to ensure the airflow cri	terion is met		I
Independent vestibule				
Select the firefighting lob!	by to be checked to ensure t	he airflow criterion is met		I
Select the door to be chec	ked to ensure the airflow cri	terion is met		I
Select the door that conne	ects the firefighting lobby w	th the staircase		Ø

Spaces Pressure difference of	riterion Airflow criterion		
Stair			
Select, amongst the doors t	hat open up to the stair, those that are co	nsidered open to check the airflow crite	erion is met
.∠ ▲ ▼			
Door	Space	Type of room	Drawing
Fire door 1 (80 x 200) cm	GF Stairs	Stair	GF - Ground Floor
Select the door to be check	ed to ensure the airflow criterion is met		Ŵ
			e.
Independent vestibule			
Select the firefighting lobby	to be checked to ensure the airflow crite	rion is met	Ø
Select the door to be check	ed to ensure the airflow criterion is met		Ø
Select the door that connec	ts the firefighting lobby with the staircase	2	Ø

Fig. 12. Pestaña - Criterio de flujo de aire

Esta pestaña puede tener los dos aspectos que se ven en la Fig. 12, dependiendo de si en el sistema de presurización calculado se ha incluido un *Vestíbulo de independencia*.

La imagen superior es la de un *sistema de presurización* que no tiene vestíbulo de independencia, por eso las únicas opciones disponibles son las de incluir las puertas que se consideran abiertas para este criterio de cálculo así como definir la puerta en la que aplicar el criterio de velocidad del flujo de aire.

En la imagen inferior se puede observar un *sistema de presurización* que sí tiene vestíbulo de independencia. Aquí no aparece disponible la definición de la puerta para aplicar el criterio de flujo de aire, puesto que primero habrá que indicar en cuál de todos los vestíbulos de independencia se va aplicará el criterio, para luego indicar las puertas, tanto la abierta entre el vestíbulo y la escalera y la que se aplica el criterio de flujo de aire.

Las puertas que se consideran abiertas para el criterio siguen introduciéndose de la misma manera.

3.4 Rejillas

Una vez finalizada la creación del sistema de presurización se han de introducir las rejillas que funcionarán como los puntos de suministro de aire a la caja de escalera y a los vestíbulos de independencia y el pozo de ascensor, en caso de que existan.

Según la normativa EN 12101-6 estas rejillas deben cumplir con los siguientes requisitos:

- **Escaleras**: Para escaleras con menos de 11 m de altura es suficiente con un solo punto de suministro de aire, para alturas mayores de 11 m deben existir puntos de suministro de aire separados no más de tres plantas entre ellos.
- **Vestíbulos de independencia**: Cada vestíbulo debe contar con un punto de suministro de aire.
- **Ascensor**: Para el pozo de ascensor debe existir un punto de suministro de aire hasta 30 m de altura.

4 Modelo de cálculo

Tras finalizar la introducción de elementos y una vez actualizado los resultados se puede acceder al receptor de *Modelo* donde se encuentran las ecuaciones fundamentales que rigen el cálculo de un sistema de sobrepresión.

Aquí se encuentran aquellos sistemas de sobrepresión que se han generado anteriormente a través del asistente, y además la posibilidad de introducir manualmente sistemas de sobrepresión.

En relación a la introducción manual de un sistema de sobrepresión, la interfaz que ofrece el software permite la definición individual de cada uno de los elementos (Puertas, Ventanas, Puertas de ascensor o Elementos constructivos) que definen las pérdidas en un sistema de presurización de escaleras. Por tanto, lo único que debe realizar para usar este método de trabajo es introducir cada uno de los parámetros necesarios para definir el sistema de presurización.

El fin de esta <u>*Guía de usuario*</u> no es explicar cómo realizar esta introducción manual de forma detallada, si no dar las herramientas necesarias para que, una vez introducido un sistema de sobrepresión, revisar los datos y realizar los ajustes que sean necesarios.

Cada vez que se *Actualicen los resultados* desde la barra de herramientas principal se volcarán todos los datos desde el modelo BIM. Si se desea realizar cambios o modificaciones de estos parámetros introducidos y se desea que no se modifiquen en próximas *Actualizaciones de los resultados*, se debe **bloquear** el *candado* que aparece a la derecha de la referencia de cada sistema, como se puede ver en la Fig. 13.

Una vez se **bloquee** este *candado* ya no se importarán modificaciones realizadas en la ventana de introducción del sistema, ni nuevas puertas abiertas en algún criterio, modificaciones sobre las superficies de las puertas, nº de ventanas, etc. Si se actualizan datos nuevos, bastará con **desbloquear** el *candado* y **actualizar los resultados**, pero se perderán aquellos datos que se hayan modificado o introducido manualmente.

Por tanto, se recomienda que, antes de realizar alguna modificación o introducción de datos de forma manual, se trabaje sobre un modelo finalizado que no sea susceptible de cambios, para evitar perder información y repetir el proceso.

System	×
Reference Class D System	1
Description Class D System	^
	~
Class Class D	~ 🥑
Pressure difference criterion (closed doors) Pressure difference criterion Airflow criterion	
Stair	
Estimate of the leaks via the doors	Ø
Estimate of the leaks via the windows	Ø
Estimate of the leaks via the lift doors	
Estimate of the leaks via the construction elements	Ø
Independent vestibule	
Estimate of the leaks via the doors	Ø
Estimate of the leaks via the windows	
Estimate of the leaks via the lift doors	Ø
Estimate of the leaks via the construction elements	Ø
Elevator/Lift	
Estimate of the leaks via the lift doors	
Estimate of the leaks via the construction elements	
Accept	Cancel

Fig. 13. Criterio de diferencia de presión bloqueado para la Clase A

4.1 Criterio de diferencia de presión (Puertas cerradas)

El cálculo de este criterio es necesario para cualquier clase de sistema seleccionado. El aspecto visual de este criterio así como el de los siguientes que se desarrollan en esta guía se aprecian bastantes similitudes, variando únicamente en ciertos aspectos.

En la Fig. 13 se representa la importación de una caja de escaleras y un vestíbulo presurizado. Accediendo a cualquiera de las opciones de la *Escalera* (Puertas, ventanas, puertas de ascensor o elementos constructivos) se mostrará una lista de todos los elementos de este tipo que el software ha interpretado del modelo BIM; si además se accede a cada uno de ellos se muestran los parámetros principales (Área de fuga del elemento y Diferencia de presión a ambos lados del mismo para **Puertas** y **Ventanas** y además Relación del Área de fuga para los **Elementos estructurales**).

Como se puede ver en la Fig. 14 la aplicación calcula para cada elemento, según su posición, cuál es la diferencia de presión a ambos lados de cada elemento, dependiendo de si el vestíbulo está presurizado o no, de si el ascensor lo está o no, etc.

Estimate of the leaks via the d	oors		1 ×			
					Estimate of the leaks via th	e doors X
Reference	A (m²)	P (Pa)	Q (m³/s)	Re	ference Fire door 1 (80 x 200)	cm
Fire door 1 (80 x 200) cm 666	0.010000	50.0	0.0587			
Interior door - wood (82.50 x 203.00) cm	0.010000	5.0	0.0186		-la	0.020000
Interior door - wood (82.50 x 203.00) cm	0.010000	5.0	0.0186	Le	Leak area of the door 0.0.	0.020000 m ⁻
Interior door - wood (82.50 x 203.00) cm	0.010000	5.0	0.0186	Pr	essure difference	5.0 Pa
Interior door - wood (82.50 x 203.00) cm	0.010000	5.0	0.0186			1/
Interior door - wood (82.50 x 203.00) cm	0.010000	5.0	0.0186		$Q_{door} = 0,83 \cdot A_{do}$	or · P ⁷ 2
Fire door 1 (80 x 200) cm	0.020000	5.0	0.0371	le le	ak rate via the door	0.0371 m ³ /s
Fire door 1 (80 x 200) cm	0.010000	5.0	0.0186			
				4	Accept	Cancel
Accept			Cancel			

Fig. 14. Puertas cerradas para el criterio de diferencia de presión con todas las puertas cerradas

Este proceso que se ve en la Fig. 14 se repite para cada elemento (Puertas, Ventanas, Puertas de ascensor o Elementos constructivos) y para cada tipo de recinto (Escalera, Vestíbulo de independencia y Ascensor).

4.2 Criterio de diferencia de presión

Para el cálculo de este criterio, además de los parámetros vistos en el criterio anterior, es necesario incluir la/s puerta/s que se considera/n abierta/s para analizar este caso.

Así como se muestra en el *Apartado* 3.2. la manera de introducir las puertas del modelo BIM que se consideran abiertas, aquí se interpretarán sus parámetros para realizar el cálculo. En esta pestaña, en la sección de las *Escaleras*, se ha añadido este nuevo elemento de cálculo para revisar y modificar sus parámetros (Fig. 15).

Estimate of the leaks via the ope	n doors	C	×	
				Estimate of the leaks via the open doors X
Reference	A (m²)	P (Pa)	Q (m³/s)	Reference Interior door - wood (82.50 x 203.00) cm
Interior door - wood (82.50 x 203.00) cm	1.674753	10.0	4.3957	
Fire door 1 (80 x 200) cm	1.600002	10.0	4.1995	Leak area of the door 1.674753 m² Pressure difference 10.0 Pa
				$Q_{\text{Open door}} = 0,83 \cdot A_{\text{door}} \cdot P^{\frac{1}{2}}$
				Leak rate via the door 4.3957 m³/s
Accept			Cancel	Accept

4.3 Criterio de flujo de aire

Por último, el criterio de flujo de aire es el más particular, como se aprecia en la Fig. 16. Al igual que en el *Apartado* 3.3 dependiendo de si existe o no vestíbulo de independencia aparecerá cierta parte del panel bloqueado o no.

Pressure difference criterion (closed doors) Pressure difference criterion	Airflow criterion	
Stair		
Leak areas via the doors		Ø
Leak areas via the windows		Ø
Leak areas via the lift doors		
Leak areas via the construction elements		Ø
☑ Leak areas via the open doors		Ø
Rate via the open door		Ø
Independent vestibule		
Leak areas via the doors		
Leak areas via the windows		
Leak areas via the lift doors		
Leak areas via the construction elements		Ø
Area of the door between the lobby and stair		Ø
Rate via the open door		Ø
Pressure difference criterion (closed doors) Pressure difference criterion	Airflow criterion	
Stair		
✓ Leak areas via the doors		Ø
Leak areas via the windows		Ø
Leak areas via the lift doors		
Leak areas via the construction elements		Ø

Fig. 16. Criterio de flujo de aire con y sin vestíbulo de independencia

Leak areas via the open doors

At the open door

Independent vestibule

Leak areas via the doors

Leak areas via the windows

Leak areas via the lift doors

☑ Leak areas via the construction elements
Area of the door between the lobby and stain

Rate via the open door

Ø

Ø

Ø

Ø

Para este criterio los únicos datos necesarios para realizar el cálculo son las áreas de fuga de cada uno de los elementos para las puertas, ventanas y puertas de ascensor y la relación del área de fuga y la superficie para los elementos constructivos.

Además en la puerta que se considera abierta para aplicar el criterio de flujo de aire también se añadirá la velocidad de este flujo y para aquellas puertas que se consideren abiertas se introducirá la superficie de este elemento, no el área de fuga.

5 Resultados

Por último, se puede acceder a los resultados de cálculo desde la barra de herramientas principal, como se observa en la Fig. 17.

Fig. 17. Acceso al listado generado por CYPEFIRE Pressure Systems

El listado justificativo de la aplicación proporciona información acerca de todos los sistemas de presurización calculados, ofrece un breve resumen de la clase de sistema y de la configuración geométrica y, por último, una descomposición de cada uno de los caudales de fuga por elementos (Puertas, Ventanas, Puertas de Ascensor, Elementos constructivos y Puertas abiertas) de cada criterio calculado.

Al final del documento se muestran los caudales totales de fuga para cada criterio de cálculo tras serles aplicados los respectivos márgenes de seguridad.

A partir de los resultados obtenidos en los criterios calculados se podrá dimensionar el ventilador o ventiladores necesarios para suplir completamente el sistema de sobrepresión de escaleras.

EN 12101-6

Class D System

Class D System

Data of the differential pressure system

No. of doors that communicate with the stair	8
No. of windows that communicate with the stair	6
Existence of firefighting lobbies at the staircase accesses	Yes
Existence of a lift	No

Pressure difference criterion (closed doors)

Stair		Independent vestibule		
Leak rates via the doors	0.2072 m³/s	Leak rates via the doors	0.5568 m³/s	
Leak rates via the windows	0.0144 m³/s	Leak rates via the windows	-	
Leak rates via the lift doors	-	Leak rates via the lift doors	0.6681 m³/s	
Leak rates via the construction elements	0.131 m³/s	Leak rates via the construction elements	0.0502 m³/s	

Pressure difference criterion

Stair	Independent vestibule			
Leak rates via the doors	0.0262 m³/s Leak rates via the doors	0.9496 m³/s		
Leak rates via the windows	0.0053 m³/s Leak rates via the windows	-		
Leak rates via the lift doors	 Leak rates via the lift doors 	0.6681 m³/s		
Leak rates via the construction elements	0.0586 m³/s Leak rates via the construction elements	0.0502 m³/s		
Leak rates via the open doors	8.5952 m³/s			

Airflow criterion

Stair		Independent vestibule		
Leak areas via the doors	0.07 m ²	Leak areas via the doors	-	
Leak areas via the windows	0.0015 m²	Leak areas via the windows	-	
			Page 1 - 2	

Fig. 18. Listado justificativo de CYPEFIRE Pressure Systems

Contacto

La configuración de un proyecto, la navegación a través de la interfaz de usuario, el diseño dentro del software y la obtención de resultados basados en el diseño se deben conocer después de completar esta guía de usuario para CYPEFIRE Pressure Systems. Si todavía tiene preguntas, problemas o necesita más información, visite nuestro sitio web o comuníquese con el soporte técnico de CYPE.

CYPE Ingenieros

Avda. de Loring, 4 03003 Alicante - Spain Tel. (+34) 965 92 25 50 cype@cype.com

CYPE Italia

Tel. (+39) 06 94 803 504 Tel. (+39) 06 94 800 227 supporto.italia@cype.com

North America & United Kingdom Contact:

USA (+1) 202 569 8902 UK (+44) 20 3608 1448 support@cype.com

CYPE em Portugal (TOP Informática, Lda.) Tel. (+351) 253 209 430 geral@top-informatica.pt **CYPE France** Tel. (+33) 2 30 96 1744 Fax (+33) 2 22 44 2508 cype.france@cype.com