
Os esforços de cálculo desfavoráveis são obtidos em 'Estaca #1', para a combinação "[4] 1.35·PP+1.35·RP+1.5·Qa (M Mín., N Mín.)".

Deve satisfazer:

$$\eta_{_{1}} = \sqrt{\frac{N_{\text{Ed}}^{2} + M_{\text{Ed},x}^{2} + M_{\text{Ed},y}^{2}}{N_{\text{Rd}}^{2} + M_{\text{Rd},x}^{2} + M_{\text{Rd},y}^{2}}} \leq 1$$

Verificação de resistência da secção (h₁)

 $N_{\mbox{\tiny Ed}}, M_{\mbox{\tiny Ed}}$ são os esforços de cálculo de primeira ordem, incluindo, no seu caso, a excentricidade mínima segundo 6.1(4):

 N_{Ed} : Esforço normal de cálculo. $N_{Ed}: \quad \underline{0.00} \quad kN$ M_{Ed} : Momento de cálculo de primeira ordem. $M_{Ed,x}: \quad \underline{0.00} \quad kN \cdot m$

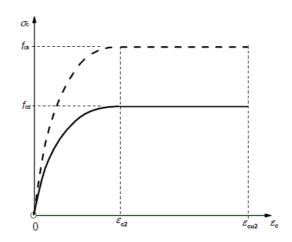
 N_{Rd} , M_{Rd} são os esforços resistentes da secção com as mesmas excentricidades que os esforços actuantes de cálculo desfavoráveis.

sforços actuantes de cálculo desfavoráveis.

 N_{Rd} : Esforço normal resistente. N_{Rd} : M_{Rd} : M_{Rd} :

 $\begin{array}{ccc} M_{Rd,x} & : & \underline{0.00} & kN \cdot m \\ M_{Rd,y} & : & \underline{36.14} & kN \cdot m \end{array}$

 $M_{\text{Ed},y}$: 18.96 kN·m


0.00 kN

Cálculo da capacidade resistente

O cálculo da capacidade resistente última das secções é efectuado a partir das hipóteses gerais seguintes (Artigo 6.1):

- (a) A rotura caracteriza-se pelo valor da deformação em determinadas fibras da secção, definidas pelos domínios de deformação de rotura.
- (b) As deformações do betão seguem uma lei plana.
- (c) As deformações $\epsilon_{\scriptscriptstyle S}$ das armaduras passivas mantêm-se iguais às do betão que as envolve.
- (d) As tensões no betão comprimido são obtidas do diagrama tensões-extensões de cálculo, indicado em 3.1.7(1).

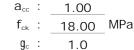
O diagrama de cálculo tensão-deformação do betão é do tipo parábola rectângulo. Não se considera a resistência do betão à tracção.

e_{cu2}: Extensão última, de acordo com Tabela 3.1.

e_{c2}: Extensão ao ser atingida a resistência máxima, de acordo com Tabela 3.1.

f_{cd}: Resistência de cálculo à compressão do betão.

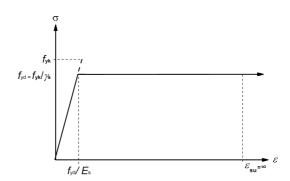
$$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_{c}$$


Sendo:

 a_{cc} : Factor que tem em conta a fadiga do betão quando está submetido a altos níveis de tensão de compressão devido a cargas de larga duração.

f_{ck}: Resistência característica à compressão do betão.

 g_{c} : Coeficiente parcial de segurança para o betão.


(e) As tensões nas armaduras obtêm-se do diagrama dado em: Artigo 3.2, Figura 3.8

 e_{cu2} : 0.0035

 $e_{\mbox{\tiny c2}}$: $\underline{\mbox{0.0020}}$

 f_{cd} : 18.00 MPa

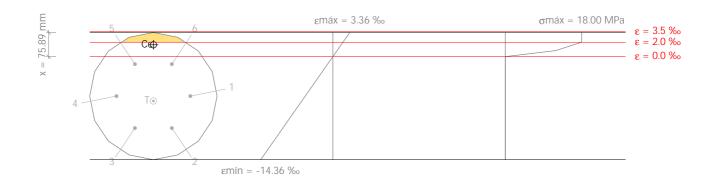
e_{su}: Extensão última, de acordo com Artigo 3.2.7(2.b).

f_{yd}: Tensão de cedência da armadura.

$$f_{vd} = f_{vk} / \gamma_s$$

Sendo:

f_{vk}: Resistência característica do aço.

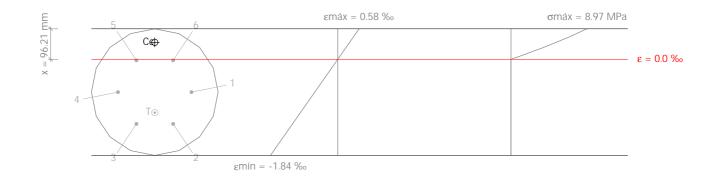

g_s: Coeficiente parcial de segurança para o aço.

 e_{su} : 0.0100 f_{yd} : 347.83 MPa

g_s: __1.15__ (e) Aplicam-se às resultantes de tensões na secção as equações gerais de equilíbrio de forças e de momentos.

 f_{yk} : _400.00 MPa

Equilíbrio da secção para os esforços resistentes, calculados com as mesmas excentricidades que os esforços de cálculo desfavoráveis:



Varão	Designação	Coord. X (mm)	Coord. Y (mm)	S _s (MPa)	е
1	Ø12	0.00	-116.00	-347.83	-0.005499
2	Ø12	-100.46	-58.00	-347.83	-0.009950
3	Ø12	-100.46	58.00	-347.83	-0.009950
4	Ø12	0.00	116.00	-347.83	-0.005499
5	Ø12	100.46	58.00	-209.57	-0.001048
6	Ø12	100.46	-58.00	-209.57	-0.001048

	Resultante (kN)	e.x (mm)	e.y (mm)
Сс	204.76	161.17	0.00
Cs	0.00	0.00	0.00
Т	204.76	-15.34	0.00

$N_{Rd} = C_c + C_s - T$	$N_{\mbox{\scriptsize Rd}}$:	0.00	kN
$M_{Rd,x} = C_{c} \cdot e_{cc,y} + C_{s} \cdot e_{cs,y} - T \cdot e_{T,y}$	$M_{\text{Rd},x}$:	0.00	kN⋅m
$M_{Rd,y} = C_c \cdot e_{cc,x} + C_s \cdot e_{cs,x} - T \cdot e_{T,x}$	$M_{\mbox{\scriptsize Rd},y}$:	36.14	kN⋅m
Em que:			
C _c : Resultante de compressões no betão.	C_c :	204.76	kN
C _s : Resultante de compressões no aço.	C_s :	0.00	kN
T: Resultante de tracções no aço.	T :	204.76	kN
$e_{\mbox{\tiny cc}}$: Excentricidade da resultante de compressões no betão na direcção dos eixos X	$e_{\scriptscriptstyle cc,x}$:	161.17	mm
e Y.	$e_{\scriptscriptstyle cc,y}$:	0.00	mm
e _{cs} : Excentricidade da resultante de compressões no aço na direcção dos eixos X e			
Υ.	e_{cs} :	0.00	mm
e _⊤ : Excentricidade da resultante de tracções no aço na direcção dos eixos X e Y.	$e_{\scriptscriptstyle T,x}$:	-15.34	mm
	$e_{\scriptscriptstyle T,y}$:	0.00	mm
e _{cmax} : Deformação da fibra mais comprimida de betão.	e_{cmax} :	0.0034	_
e _{smax} : Deformação do varão de aço mais traccionado.	e_{smax} :	0.0100	_
s _{cmax} : Tensão da fibra mais comprimida de betão.	S_{cmax} :	18.00	MPa
s _{smax} : Tensão do varão de aço mais traccionado.	S_{smax} :	347.83	MPa

Equilíbrio da secção para os esforços actuantes de cálculo desfavoráveis:

Varão	Designação	Coord. X		S _s	e	
l al ac	2 00.gaça0	(mm)	(mm)	(MPa)		
1	Ø12	0.00	-116.00	-125.87	-0.000629	
2	Ø12	-100.46	-58.00	-247.70	-0.001238	
3	Ø12	-100.46	58.00	-247.70	-0.001238	
4	Ø12	0.00	116.00	-125.87	-0.000629	
5	Ø12	100.46	58.00	-4.04	-0.000020	
6	Ø12	100.46	-58.00	-4.04	-0.000020	

	Resultante (kN)	e.x (mm)	e.y (mm)
Сс	85.41	157.20	0.00
Cs	0.00	0.00	0.00
Т	85.41	-64.83	0.00

$N_{Ed} = C_{c} + C_{s} - T$	$N_{\mbox{\scriptsize Ed}}$:	0.00	kN
$M_{Ed,x} = C_{c} \cdot e_{cc,y} + C_{s} \cdot e_{cs,y} + T \cdot e_{T,y}$	$M_{\mbox{\scriptsize Ed},x}$:	0.00	kN⋅m
$M_{Ed,y} = C_{c} \cdot e_{cc,x} + C_{s} \cdot e_{cs,x} + T \cdot e_{T,x}$	$M_{\text{Ed},y}$:	18.96	kN⋅m
Em que:			
C _c : Resultante de compressões no betão.	$C_{\rm c}$:	85.41	kN
C _s : Resultante de compressões no aço.	C_s :	0.00	kN
T: Resultante de tracções no aço.	T :	85.41	kN
e _{cc} : Excentricidade da resultante de compressões no betão na direcção dos eixos X	$e_{\scriptscriptstyle cc,x}$:	157.20	mm
e Y.	$e_{\scriptscriptstyle cc,y}$:	0.00	mm
e _{cs} : Excentricidade da resultante de compressões no aço na direcção dos eixos X e			
Y.	e_{cs} :	0.00	mm
e₁: Excentricidade da resultante de tracções no aço na direcção dos eixos X e Y.	$e_{\scriptscriptstyle T,x}$:	-64.83	mm
	$e_{\scriptscriptstyle T,y}$:	0.00	mm
e _{cmax} : Deformação da fibra mais comprimida de betão.	e_{cmax} :	0.0006	
e _{smax} : Deformação do varão de aço mais traccionado.	e_{smax} :	0.0012	
s _{cmax} : Tensão da fibra mais comprimida de betão.	S_{cmax} :	8.97	MPa
s _{smax} : Tensão do varão de aço mais traccionado.	S_{smax} :	247.70	MPa