Description				
Wall:	SW1			
Span:	Section 1 - (7.00-10.50)			
Segment:	S1			
Concrete:	35.00 MPa			
Steel for horizontal reinforcement:	420.00 MPa			
Steel for vertical reinforcement:	420.00 MPa			

ACI 318M-14, Work section 11

In-plane shear strength (ACI 318M-14, 11.5.4)

The worst case forces to be withstood from the analysis are produced at Elevation 7.00 (Base), in the combination of loadcase $0.9 \cdot PP + 0.9 \cdot CM + 0.3 \cdot SX + SY$.

$\phi V_n \ge V_u$	2382.0 kN ³ 1621.2 kN 🗸
Where:	
V _u : Factored shear force at section.	V _u : 1621.2 kN
V _n : Nominal shear strength.	V _n : 3970.0 kN
$V_n = V_c + V_s$	
$V_n \leq 0.83\sqrt{f_c}hd$	
V _c : Nominal shear strength provided by concrete.	V _c : 2524.8 kN
$V_{c} = MIN(V_{c1}, V_{c2})$	
$V_{c1} = 0.27\lambda \sqrt{f_c} h d + \frac{N_u d}{4 I_w}$	V _{c1} : _2524.8_ kN
$V_{c2} = \left[0.05\lambda\sqrt{f_c^{'}} + \frac{I_w\left(0.1\lambda\sqrt{f_c^{'}} + 0.2\frac{N_u}{I_wh}\right)}{\frac{M_u}{V_u} - \frac{I_w}{2}}\right]hd$	V _{c2} : <u>12356.8</u> kN
Vs: Nominal shear strength provided by shear reinforcement.	V _s : 1445.2 kN
$V_{s} = \frac{A_{v}f_{vt}d}{s}$	
N _u : Factored axial force.	N _u : 3040.0 kN
M _u : Factored moment.	M _u : _4861.1 kN⋅m
A _v /s: Area of shear reinforcement.	A _v /s : <u>8.60</u> cm ² /m
f'c: Specified compressive strength of concrete.	f'。: <u>35.00</u> MPa
$\sqrt{f_c} \le 8.3$ MPa	
fy: Specified yield strength of transverse reinforcement.	f _y : 420.00 MPa
I _w : Length of wall.	I _w : 500.0 cm
h: Thickness of wall.	h : <u>30.0</u> cm
d: Distance from extreme compression fiber to centroid of longitudinal	
tension reinforcement.	d : <u>400.0</u> cm
$d = 0.8 \cdot I_w$	
I: Modification factor to reflect the reduced mechanical properties of lightweight concrete relative to normalweight concrete of the same	
f: Strength reduction factor	1.00
	· · <u> </u>

Minimum transverse reinforcement (ACI 318M-14, 11.6)

The worst case forces to be withstood from the analysis are produced at Elevation 7.00 (Base), in the combination of loadcase $1.2 \cdot PP + 1.2 \cdot CM - 0.3 \cdot SX - SY$.

If in-plane $V_u > 0.5 \cdot \phi V_c$, shall be satisfied:			
$ ho_t \ge 0.0025$	0.0029 ³	0.0025	\checkmark
Where:			
rt: Ratio of area of distributed transverse reinforcement to gross concrete area			
perpendicular to that reinforcement.	r _t :	0.0029	_
V _u : Factored shear force at section.	V_u :	1614.3	kΝ
V _c : Nominal shear strength provided by concrete.	$V_{\rm c}$:	2929.8	kΝ

Minimum longitudinal reinforcement (ACI 318M-14, 11.6)

The worst case forces to be withstood from the analysis are produced at Elevation 7.00 (Base), in the combination of loadcase 1.2·PP+1.2·CM-0.3·SX-SY.

n-plane $V_u > 0.5 \cdot \phi V_c$, shall be satisfied:			
$\rho_{\rm I} \geq 0.0025 + 0.5 \big(2.5 - h_{\rm w} / I_{\rm w} \big) \big(\rho_{\rm t} - 0.0025 \big)$	0.0029 ³	0.0028	\checkmark
$\rho_{\rm I} \geq 0.0025$	0.0029 3	0.0025	\checkmark
Where:			
r _i : Ratio of area of distributed longitudinal reinforcement to gross concrete area	t		
perpendicular to that reinforcement.	r, :	0.0029	_
rt: Ratio of area of distributed transverse reinforcement to gross concrete area			
perpendicular to that reinforcement.	r_t :	0.0029	-
V _u : Factored shear force at section.	V_u :	1614.3	kΝ
V _c : Nominal shear strength provided by concrete.	V_{c} :	2929.8	kN
h _w : Height of wall.	$h_{\rm w}$:	350.0	_
I _w : Length of wall.	I_w :	500.0	_

Maximum spacing of transverse reinforcement (ACI 318M-14, 11.7.3)

The worst case forces to be withstood from the analysis are produced at Elevation 7.00 (Base), in the combination of loadcase $1.4 \cdot PP + 1.4 \cdot CM$.

If in-plane $V_u \le 0.5 \cdot \phi V_c$, shall be satisfied:

lf

30.0 cm £ 4	5.0 cm	\checkmark
S :	30.0	cm
h :	30.0	cm
V_u :	0.0	kΝ
V_{c} :	644.4	kΝ
	30.0 cm £ 4 s : h : V _u : V _c :	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Maximum spacing of longitudinal reinforcement (ACI 318M-14, 11.7.2)

The worst case forces to be withstood from the analysis are produced at Elevation 7.00 (Base), in the combination of loadcase $1.4 \cdot PP + 1.4 \cdot CM$.

If in-plane $V_u \le 0.5 \cdot \phi V_c$, shall be satisfied:	
$s \le min(3h, 450 mm)$	30.0 cm £ 45.0 cm 🗸
Where:	
s: Spacing of longitudinal bars.	s : _30.0 _ cm
h: Thickness of wall.	h : 30.0 cm
V _u : Factored shear force at section.	V _u : 0.0 kN
V _c : Nominal shear strength provided by concrete.	V _c : 644.4 kN

Number of layers (ACI 318M-14, 11.7.2.3)	
For walls with 'h' greater than 250 mm distributed reinforcement for each direct two layers parallel with wall faces.	tion shall be placed in \checkmark
h: Thickness of wall	h · 20.0 cm
n: Number of layers.	n : _2_
ACI 318M-14, Work section 18	
Distributed web reinforcement ratios (ACI 318M-14, 18.10.2.1)	
The worst case forces to be withstood from the analysis are produced at Elevat combination of loadcase $1.2 \cdot PP + 1.2 \cdot CM + 0.3 \cdot SX + SY$.	ion 7.00 (Base), in the
If in-plane $V_u \leq 0.083 A_{cv} \lambda \sqrt{f'_c}$, shall be satisfied:	
$\rho_{l} \geq 0.0025 + 0.5 \big(2.5 - h_{w} / l_{w} \big) \big(\rho_{t} - 0.0025 \big)$	0.0029 ³ 0.0028 🗸
$\rho_{t} \ge 0.0025$	0.0029 ³ 0.0025 🗸
Where:	
r ₁ : Ratio of area of distributed longitudinal reinforcement to gross concrete area perpendicular to that reinforcement.	r.:0.0029
r_t : Ratio of area of distributed transverse reinforcement to gross concrete area perpendicular to that reinforcement.	r.: 0.0029
V_{u} : Factored shear force at section.	V_{μ} : -1614.3 kN
A _{cv} : Area of concrete section.	A_{cv} : 1500000.00 mm ²
f'c: Specified compressive strength of concrete.	f' _c : 35.00 MPa
√f [′] < 8.3MPa	
I : Modification factor to reflect the reduced mechanical properties of lightweight concrete relative to normalweight concrete of the same compressive strength.	I : <u>1.00</u>
Maximum reinforcement spacing (ACI 318M-14, 18.10.2.1)	
Required:	,
s _i ≤ 450 mm	30.0 cm £ 45.0 cm 🗸
$s_t \leq 450 mm$	30.0 cm £ 45.0 cm 🗸
s _i : Spacing of longitudinal bars.	sı : _30.0_cm
s _t : Spacing of transverse bars.	s_t : <u>30.0</u> cm
Number of layers (ACI 318M-14, 18.10.2.2)	
At least two curtains of reinforcement shall be used in a wall if $V_u > 0.17 A_{cv} \lambda \sqrt{f'_c}$	or $h_w/I_w \ge 2.0$
n: Number of layers.	n: 2
V _u : Factored shear force at section.	V _u : 0.0 kN
A _{cv} : Area of concrete section.	A_{cv} : _1500000.00 mm ²
I: Modification factor to reflect the reduced mechanical properties of lightweight concrete relative to normalweight concrete of the same compressive strength	
f'.: Specified compressive strength of concrete	- <u>ι.υυ</u> Γ'.: 35.00 MPa
h _w : Height of wall.	h_w : 350.0 cm
I_w : Length of wall.	$I_w : 500.0$ cm

Shear strength (ACI 318M-14, 18.10.4.1)

The worst case forces to be withstood from the analysis are produced at Elevation 7.00 (Base), in the combination of loadcase $1.2 \cdot PP + 1.2 \cdot CM + 0.5 \cdot Qa - 0.3 \cdot SX - SY$.

	$\phi V_n \ge V_u$	2415.0 k	N ³ 1626.3 k	N 🗸
Whe	re:			
	V_{u} : Factored shear force at section.	V_u :	1626.3	kΝ
	V _n : Nominal shear strength.	V_n :	4025.0	kΝ
	$V_{n} = A_{cv} \left(\alpha_{c} \lambda \sqrt{f_{c}^{'}} + \rho_{t} f_{y} \right)$			
	$V_n \le 0.83A_{cv}\sqrt{f_c}$ (18.10.4.4)			
	A _{cv} : Area of concrete section.	$A_{\rm cv}$:	1500000.00	mm²
	The coefficient α_c is 0.25 for $h_w/I_w \le 1.50$, is 0.17 for $h_w/I_w \ge 2.00$, and varies linearly between 0.25 and 0.17 for h_w/I_w between 1.50 and 2.00.	a _c :	0.25	
	h _w : Height of wall.	$h_{\rm w}$:	350.0	cm
	I _w : Length of wall.	I_w :	500.0	cm
	I : Modification factor to reflect the reduced mechanical properties of lightweight concrete relative to normalweight concrete of the same			
	compressive strength.	Ι:	1.00	
	f'c: Specified compressive strength of concrete.	f' _c :	35.00	MPa
	r_t : Ratio of area of distributed transverse reinforcement to gross concrearea perpendicular to that reinforcement.	te rt:	0.0029	
	f _y : Specified yield strength of transverse reinforcement.	f _y :	420.00	MPa
	f: Strength reduction factor.	f :	0.60	

Longitudinal reinforcement ratio (ACI 318M-14, 18.10.4.3)

If h_w/l_w does not exceed 2.00, reinforcement ratio ρ_l shall be at least the reinforcement	nt ratio ρ_t .	
$\rho_l \geq \rho_t$	0.0029 3 0.0	029 🗸
Where:		
r _i : Ratio of area of distributed longitudinal reinforcement to gross concrete area perpendicular to that reinforcement.	r, :	0.0029
r _t : Ratio of area of distributed transverse reinforcement to gross concrete area perpendicular to that reinforcement.	r _t :	0.0029
	$h_{\rm w}/I_{\rm w}$:	0.70

Edge elements (ACI 318M-14, 18.10.6.1, 18.10.6.5) (Initial)

Special boundary elements

Structural wall shall have special boundary elements at boundaries and edges around openings where the maximum extreme fiber compressive stress, σ , exceeds 0.2f'_c:

(ACI 318M-14, 18.10.6.3)

P _u (kN)	M _u (kN⋅m)	Edge elements	Location	σ (MPa)	0.2f'₅ (MPa)	Necesita elemento especial
4858.1	-4808.2	1.2·PP+1.2·CM+0.5·Qa-0.3·SX+SY	Elevation 7.00 (Base)	7.09	7.00	Yes

Where:

P_u: Factored axial force.

M_u: Factored moment.

s: Maximum extreme fiber compressive stress.

f'.: Specified compressive strength of concrete.

Edge elements (ACI 318M-14, 18.10.6.1, 18.10.6.5) (Final)

Special boundary elements

Structural wall shall have special boundary elements at boundaries and edges around openings where the maximum extreme fiber compressive stress, σ , exceeds 0.2f'_c:

(ACI 318M-14, 18.10.6.3)

P _u (kN)	M _u (kN⋅m)	Edge elements	Location	σ (MPa)	0.2f' _c (MPa)	Necesita elemento especial
5547.8	4877.2	1.2·PP+1.2·CM+0.5·Qa-0.3·SX-SY	Elevation 7.00 (Base)	7.60	7.00	Yes

Where:

- P_u: Factored axial force.
- M_u: Factored moment.
- s: Maximum extreme fiber compressive stress.
- f'c: Specified compressive strength of concrete.

Length of boundary element (ACI 318M-14, 18.10.6.4(a)) (Initial)

The worst case forces to be withstood from the analysis are produced at Elevation 7.00 (Base), in the combination of loadcase $1.2 \cdot PP + 1.2 \cdot CM + 0.5 \cdot Qa - 0.3 \cdot SX + SY$.

The boundary element shall extend horizontally from the extreme compression fiber a distance at least the greater of $(c-0.1 \cdot I_w)$ and c/2.

$\ell_{be} \ge MAX(c-0.1l_w,c/2)$		60.0 ≥ 43.	.1 🗸
Where:			
I _{be} : Length of boundary element	I _{be} :	60.0	cm
c: Largest neutral axis depth calculated for the factored axial force and nominal moment strength.	с:	86.2	cm
I _w : Length of wall.	I_w :	500.0	cm
P _u : Factored axial force.	P _u :	4858.1	kN
M _n : Nominal moment strength.	M_n :	-18771.2	kN∙m

Length of boundary element (ACI 318M-14, 18.10.6.4(a)) (Final)

The worst case forces to be withstood from the analysis are produced at Elevation 7.00 (Base), in the combination of loadcase $1.2 \cdot PP + 1.2 \cdot CM + 0.5 \cdot Qa - 0.3 \cdot SX - SY$.

The boundary element shall extend horizontally from the extreme compression fiber a distance at least the greater of $(c-0.1 \cdot I_w)$ and c/2.

$\ell_{be} \geq MAX(c-0.1l_w,c/2)$		60.0 ≥ 45.7 🗸	
Where:			
I _{be} : Length of boundary element	be :	60.0	cm
c: Largest neutral axis depth calculated for the factored axial force and nominal moment strength.	с:	91.3	cm
I _w : Length of wall.	I_w :	500.0	cm
P _u : Factored axial force.	P_{u} :	5547.8	kΝ
M _n : Nominal moment strength.	M_n :	20082.7	kN∙m

Maximum spacing of longitudinal bars laterally supported (ACI 318M-14, 18.10.6.4(e), 18.7.5.2) (Initial)
$h_x \le MIN\left(\frac{2}{3}b, 350mm\right)$	15.0 ≤ 20.0 ✓
Where:	
b: Width of boundary element	b : <u>30.0</u> cm

 h_x : Spacing of the longitudinal bars that are supported laterally by the corner of a supplementary hook or closed confinement stirrup branch. h_x : 15.0 cm

Maximum spacing of longitudinal bars laterally supported (ACI 318M-14, 18.10.6.4(e),	18.7.5.2) (Final)
$h_x \le MIN\left(\frac{2}{3}b, 350mm\right)$	15.0 ≤ 20.0 ✓
Where:	
b: Width of boundary element	b : <u>30.0</u> cm
h_x : Spacing of the longitudinal bars that are supported laterally by the corner of a supplementary hook or closed confinement stirrup branch.	h _x : <u>15.0</u> cm
Width of boundary element (ACI 318M-14, 18.10.6.4(b)) (Initial)	
Width of the flexural compression zone, 'b', including flange, if present, shall be:	
$b \ge h_u / 16$	30.0 ≥ 21.9 cm √
When $h_w/l_w \ge 2.0$ and $c/l_w \ge 3/8$	•
$b \ge 300 mm$	🗸
Where:	·
h _u : Laterally unsupported height at extreme compression fiber of wall.	h _u : <u>350.0</u> cm
I _w : Length of wall.	I _w : <u>500.0</u> cm
h _w : Height of wall.	h _w : <u>350.0</u> cm
c: Distance from extreme compression fiber to neutral axis.	c : <u>86.2</u> cm
Width of boundary element (ACI 318M-14, 18,10,6,4(b)) (Final)	
Width of the flexural compression zone 'b' including flange if present shall be	
$b \ge h_u / 16$	30.0 ≥ 21.9 cm 🗸
When $h_w/l_w \ge 2.0$ and $c/l_w \ge 3/8$	
b ≥ 300mm	🗸
Where:	
h _u : Laterally unsupported height at extreme compression fiber of wall.	h _u : <u>350.0</u> cm
I _w : Length of wall.	$I_{w} : 500.0 \text{ cm}$
n _w : Height of Wall.	$n_w : 350.0 \text{ cm}$
C. Distance norm extreme compression riber to neutral axis.	C . <u>91.3</u> cm
Spacing of transverse reinforcement of boundary element (ACI 318M-14, 18.10.6.4(e)	, 18.7.5.3) (Initial)
Spacing of transverse reinforcement shall not exceed:	
$\sin(b, \ell_{be})$	9.0 < 10.0 cm
$3 \leq \frac{3}{3}$	9.0 ≤ 10.0 cm ¥
$s \le 6 \cdot d_{b,min}$	9.0 ≤ 9.5 cm 🗸
$S \leq S_0$	9.0 ≤ 15.0 cm 🗸
Where:	
b: Width of boundary element	b : <u>30.0</u> cm
Ibe: Length of boundary element	I_{be} : <u>60.0</u> CM
u _{b,min} . Diameter of the smallest longitualmal bar. s: Center-to-center spacing of transverse reinforcement	$u_{b,min}$: <u>1.6</u> CM
h.: Maximum center-to-center spacing of funditudinal bars laterally supported by	3 . <u>9.0</u> cm
corners of crossties or hoop legs around the perimeter of the column.	h _x : <u>15.0</u> cm
s _o : Maximum separation	s_0 : <u>15.0</u> cm

$$s_0 \le 100 + \left(\frac{350 - h_x}{3}\right), s_0 \le 150 \text{ mm}$$

Spacing of transverse reinforcement of boundary element (ACI 318M-14, 18.10.6.4(e), 18.7.5.3) (Final)

Spacing of transverse reinforcement shall not exceed:

$$s \leq \frac{\min(b, \ell_{be})}{3} \qquad \qquad 9.0 \leq 10.0 \text{ cm} \checkmark$$

$$s \leq 6 \cdot d_{b,min} \qquad \qquad 9.0 \leq 9.5 \text{ cm} \checkmark$$

$$s \leq s_0 \qquad \qquad 9.0 \leq 15.0 \text{ cm} \checkmark$$
Where:
b: Width of boundary element

$$l_{be:} \text{ Length of boundary element} \qquad b : 30.0 \text{ cm}$$

$$d_{b,min} \text{ Diameter of the smallest longitudinal bar.} \qquad b : 30.0 \text{ cm}$$

$$l_{be} : 60.0 \text{ cm}$$

$$d_{b,min} : 1.6 \text{ cm}$$

$$s : 9.0 \text{ cm}$$

$$h_x: \text{ Maximum center-to-center spacing of longitudinal bars laterally supported by}$$

$$h_x : 15.0 \text{ cm}$$

 s_{o} : 15.0 cm

 A_{g} : 180000.00 mm²

 $A_{\rm ch} : _136800.00 \ mm^2$

24.0

9.0

35.00

 A_g : 180000.00 mm²

 $A_{\rm ch} \ : \ 136800.00 \ mm^2$

24.0

35.00

s : 9.0

cm

ст

MPa

b_c :

f'_c :

cm

cm

MPa

MPa

b_c :

f'c : ____

f_{yt} : 420.00

s :

so: Maximum separation

$$s_0 \le 100 + \left(rac{350 - h_x}{3}
ight), s_0 \le 150 \text{ mm}$$

Amount of transverse reinforcement of boundary element (ACI 318M-14, 18.10.6.4(f)) (Initial)

The amount of transverse reinforcement shall be in accordance with:

$A_{sh} \geq 0.3 \left(\frac{A_g}{A_{ch}} - 1\right) \frac{f_c^{'}}{f_{yt}} \cdot s \cdot b_c$	283.87 ≥ 170.53 mm²	✓
$A_{sh} \ge 0.09 rac{f_c^{'}}{f_{yt}} \cdot s \cdot b_c$	283.87 ≥ 162.00 mm²	✓

Where:

 A_{sh} : Total cross-sectional area of transverse reinforcement, including crossties, within spacing s and perpendicular to dimension, b_c .

A_g: Gross area of concrete section.

 $A_{\mbox{\tiny ch}}$: Cross-sectional area measured to the outside edges of transverse reinforcement.

b_c: Cross-sectional dimension of member core measured to the outside edges of the transverse reinforcement composing area A_{sh}.
s: Center-to-center spacing of transverse reinforcement.

 $f^{\prime}{}_{\rm c}{:}$ Specified compressive strength of concrete.

f_{yt}: Specified yield strength of transverse reinforcement.

Amount of transverse reinforcement of boundary element (ACI 318M-14, 18.10.6.4(f)) (Final)

The amount of transverse reinforcement shall be in accordance with:

$A_{sh} \geq 0.3 \bigg(\frac{A_g}{A_{ch}} - 1 \bigg) \frac{f_c'}{f_{yt}} \cdot s \cdot b_c$	283.87 ≥ 170.53 mm² 🗸
$A_{sh} \ge 0.09 \frac{f_c^{'}}{f_{yt}} \cdot s \cdot b_c$	283.87 ≥ 162.00 mm² ✓

Where:

 $A_{sh}\!\!:$ Total cross-sectional area of transverse reinforcement, including crossties, within spacing s and perpendicular to dimension, $b_c.$

A_g: Gross area of concrete section.

A _{ch} : Cross-sectional are	a measured to the	outside edges of transverse
reinforcement.		

 b_c : Cross-sectional dimension of member core measured to the outside edges of the transverse reinforcement composing area A_{sh} .

s: Center-to-center spacing of transverse reinforcement.

f'.: Specified compressive strength of concrete.

 f_{yt} : Specified yield strength of transverse reinforcement.

f_{yt} : 420.00 MPa